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Accurateness of the approximated aerodynamic characteristics of an unstable aircraft is considerably 

significant in flight control system design or high-fidelity flight simulator development. Classical system 
identification technique consist of the equation and output error methods which are strongly influenced by data 
quality. Accordingly, unsatisfactory results may be arisen due to measurement or process  noise. Consequently, 

most of the engineers rely on feed forward neural network in order to cope with those undesired drawbacks. 
But, noisy data dramatically degrades the performance of neural network as well; thus, the Kalman filter based 
backpropagation algorithm is proposed. Neural network approach has many parameters, including the 

hyperparameters, which have to be searched for an optimal result. To determine these optimal parameters, the 
genetic algorithm is used. In this paper, it is aimed to estimate longitudinal aerodynamic characteristics of 

highly maneuverable unstable aircraft with the engaged control system for flight simulation data. For this 
purpose, F-16 aircraft is modelled using the aerodynamic database derived from a low-speed wind tunnel test. 
Successful results show the effectiveness of the proposed method. To assess neural network approach 

performance, the most common resampling methods are used and compared in order to choose the best for 
each longitudinal aerodynamic coefficient. 

Nomenclature 

p   = Roll Rate 

q    =  Pitch Rate 

r    =  Yaw Rate 

𝑝∗    =  Normalized Roll Rate  

𝑞∗    =  Normalized Pitch Rate 

𝑟∗    =  Normalized Yaw Rate 

B    =  Reference Length for Lateral-Directional Coefficient  

L    = Reference Length for Longitudinal Coefficient 

V    = True Airspeed 

𝑎𝑥    = x-axis Linear Acceleration 
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𝑎𝑦    = y-axis Linear Acceleration 

𝑎𝑧    = z-axis Linear Acceleration 

LEF   =  Leading Edge Flap 

𝐶𝑋   = x-axis Aerodynamic Force Coefficient 

𝐶𝑌   = y-axis Aerodynamic Force Coefficient 

𝐶𝑍   = z-axis Aerodynamic Force Coefficient 

𝐶𝑙   = x-axis Aerodynamic Moment Coefficient 

𝐶𝑚   = y-axis Aerodynamic Moment Coefficient 

𝐶𝑛   = z-axis Aerodynamic Moment Coefficient 

𝛼    = Angle of Attack 

𝛽    = Angle of Sideslip 

𝛿𝑎   = Aileron Deflection 

𝛿ℎ   = Horizontal Tail Deflection  

𝛿𝑟   = Rudder Deflection  

𝛿𝐿𝐸𝐹  = Leading Edge Flap Deflection  

ANN   = Artificial Neural Network 

GA   = Genetic Algorithm 

SSE   = Sum of Square Error 

MSE   =  Mean Square Error  

N    =   Number of samples in the data  

𝑛𝑡𝑟𝑎𝑖𝑛  =   Number of samples in the training data 

𝑛𝑡𝑒𝑠𝑡   =   Number of samples in the testing data 

 

I. Introduction 

 

System identification yields a complete breakdown of the various components contributing to the observed 
response and thereby provides an overall understanding of the flight vehicle's dynamics. For many applications, an 
aircraft can be assumed to be a rigid body whose motion is governed by the laws of Newtonian physics. System 

identification can be used to characterize the applied forces and moments acting on the aircraft arising from 
aerodynamics, inertial, gravitational, and propulsion. Typically, thrust forces and moments are obtained from ground 

tests, so aircraft system identification is applied to model the functional dependence of aerodynamic forces and 
moments on the aircraft motion and the control variables. 
 

Aircraft system identification is primarily equipped with a mathematical description for the aerodynamic forces 
and moments in terms of relevant, measurable quantities such as control surface deflection, aircraft angular velocity, 
airspeed or Mach number, and orientation of the aircraft toward the relative wind [1]. Aerodynamic parameters 

quantify the functional dependence of the aerodynamic forces and moments on measurable quantities; and in general, 
the mathematical model is assumed to be parametric. Aircraft system identification can then be defined as a parameter 

estimation problem. Thus, the parameter estimation process consists of finding values of these unknown model 
parameters in the assumed model structure. 
 

Parameter estimation includes a probability density function that describes the difference between the system 
model response and the measured system response. There are two common approaches in aircraft parameter estimation 
problem in literature; these are equation-error method and output-error method. These estimation approaches can be 

distinguished from each other. In the case of the equation-error method, non-state parameters such as force and 
moment coefficients, which are not integrated during the simulation, are determined without the knowledge of their 

past history [2]. In the case of the output-error method, system outputs are considered, such as the angle of attack, 
angular rates, etc., which are integrated during a simulation [2]. In recent years, researchers are interested in artificial 
neural networks and deep neural networks due to their successful achievements in a vast range of application areas: 

aircraft aerodynamic parameter identification [3-7] is also one such application.  
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The neural network is one of the most commonly used machine learning techniques. Artificial neural networks 
(ANN) are considered as an approximation to a general function and are assumed to be capable of approximating any 

continuous function with any desired accuracy by appropriate network architecture [7]. However, these neural 
networks are, in general, black-box models: basically, they have no physical understanding for designers. The neural 
network is a combination of the weight matrix, input vector, and bias vector [8]. In order to understand a neural 

network model and be able to use it, many parameters, hyperparameters, are to be considered and be tuned by the user. 
If the user doesn't have solid experience with the neural network, it is unlikely that the model is a good one; thence, it 

might take a long time in order to achieve a reasonable result via the neural network. To solve this problem, researchers 
consider a neural network as an optimization problem and solve for the parameters using, e.g., the genetic algorithm 
[9].  

 
Although the neural network approach works well with the standard backpropagation algorithm, it is sensitive to 

the stochastic disturbances, and model performance decreases for time history data with noise. Therefore, the Kalman 

filter-based backpropagation algorithm is used to train the neural network and estimate the aerodynamic coefficients 
from aforementioned noisy time history data [1]. 

 
In system identification, the dataset is divided into a training, a validation, and a testing dataset. In this paper, the 

data is firstly split into two parts; the first part is used to train the aerodynamic model. The second split of data is used 

to test the aerodynamic model. There are many alternative approaches to validate generated model performance; the 
most common tool is the hold-out cross-validation approach. This approach randomly divides the training dataset into 
two groups: training and validation datasets. This approach has a potential drawback; the estimated test error rate can 

be highly variable depending on which observation dataset falls into the training dataset and which observation falls 
into the validation dataset. Thus, it is a good practice to apply other resampling methods as a refinement to overcome 

this drawback; some of them are K-fold cross-validation and bootstrap approaches. Resampling methods are an 
indispensable tool in modern statistics [10]. 

         

The flight test data used in this study is collected from a high-fidelity F-16 simulator. F-16 aircraft is modelled 
with controls for the leading-edge flap, flaperon, horizontal tail, rudder, and throttle. The stability augmentation system 
and control augmentation system has been developed using the aircraft model to carry out the maneuvers. Simulation 

data are collected in twelve different trim points with a combination of two different altitudes and six different speed 
settings that differ from 0.3 Mach to 0.6 Mach speed. Control inputs of the pilot are designed for short-period, phugoid, 

dutch-roll, and bank-to-bank maneuvers to excite the different modes of vehicle dynamic motion. 

II. Aircraft Modeling, Simulation, and Data Gathering 

A. Aircraft Modelling 

The aircraft simulation model includes the primary model and the subsystem models (bare-airframe, actuator, 
engine, environment, sensors, and flight control) as seen in Fig. 1. The bare-airframe model consists of aerodynamics 

and the equation of motion models (EOM). The aerodynamic data of the aircraft are obtained from the study published 
in the 1979 NASA technical report prepared from wind tunnel tests [11]. In the EOM model, all forces and moments 
acting on body axes are summed, and then, equations of motion are solved. Actuators are modeled as a first-order 

system [12]. The flight control model includes a stability augmentation system (SAS) and control augmentation system 
(CAS). In highly maneuverable aircraft, CAS and SAS are needed to perform tasks such as precision tracking of 

targets [12]. Pitch and roll rate command systems are used to control the aircraft. 

B. Optimized Maneuvers 

The main idea behind system identification maneuvers that we describe in the sequel is to excite related modes of 
the aircraft motion independently and sufficiently. In general, while exciting a particular mode, excitation of other 

modes should be avoided. Input design for a short period, phugoid, Dutch roll, and bank-to-bank maneuvers are 
explained below and depicted in Fig. 2. 
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Short Period Mode (SP) 
It is a multi-step 3-2-1-1 elevator input exciting the short period motion with variations in the angle of attack of 

about 4 degrees and 0.5 g in the vertical acceleration. It provides the most information to enable the estimation of 
derivatives of the vertical and pitching motion [1].  
 

Dutch-Roll (DR) 
The Dutch Roll maneuver provides information to enable the estimation of the derivatives of the lateral motion [1]. 

Such a maneuver provides maximum information on the frequency and damping of this oscillatory mode. It is excited 
by applying rudder inputs. Usually, several cycles of oscillations are recorded. The resulting maximum peak-to-peak 
variation in the angle of sideslip is typical of the order of ±4 degrees or 0.1g lateral acceleration. The Dutch roll as 

well as the bank-to-bank maneuvers described below are performed at different trim speeds because most of the lateral-
direction derivatives depend on the angle of attack. 
 

Bank-to-Bank (BTB) 
Bank-to-Bank maneuver provides more additional information on lateral-direction derivatives related to roll rate 

and aileron deflection [1]. Aileron input is applied, which roll the aircraft from wings -level to 30 degrees bank on one 
side; this is followed by changing input and going smoothly to the wings-level and to opposite bank angle, and again 
to wings-level condition. The changes in aileron result in rapid variation in roll rate and acceleration. 

 

 

Figure 1. Aircraft model 
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Figure 2. Control inputs for the short period, phugoid, dutch-roll, and bank-to-bank maneuvres  

Control inputs of the pilot are applied for short-period, phugoid, dutch-roll, and bank-to-bank maneuvers to excite 
the different modes of vehicle dynamic motion. All test steps were started at level flight trim condition. Trims were 
not performed at idle or maximum power settings since there is no thrust effect on the aerodynamic coefficients. After 

the maneuver, the autopilot was activated to trim the aircraft. Flight test scope is shown in Fig. 3. 
 

 

Figure 3. Flight test scope 

 

For aerodynamic model extraction from the test data, a typical set of measurements required: (i) control surface 
deflections, (ii) linear accelerations, (iii) angular rates, (iv) attitude angles, (v) air data, (vi) static pressure, (vii) engine 

parameters, and finally, (viii) pilot forces are recorded [1-2]. A sampling frequency of 20-25 Hz is usually assumed 
to be sufficient for rigid-body aerodynamic model estimation [2]. Thereby, the simulation results are recorded at a  20 
Hz sampling rate. 

C. Flight Derived Aerodynamic Force and Moment Coefficients 

A preprocessing step is required in the case of aerodynamic parameter identification as the aerodynamic forces 
and moments are not directly measured. However, those can be obtained from the measurements of the related 

variables such as linear accelerations, angular rates, mass properties, and other external forces and moments, as seen 
in Fig. 4 [13]. 
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Figure 4. Flight derived aerodynamic force and moment coefficients  

D. Aerodynamic Model Equations and Neural Network Dataset Preparation 

Modeling the aircraft aerodynamics raises the fundamental question of what the mathematical structure of the 

model should be. Aerodynamic modeling provides a means of obtaining relationships between the three forces 𝑋, 𝑌, 𝑍 
along the three Cartesian coordinates and the moments 𝑙, 𝑚,𝑛 about these axes as functions of the linear translational 

motion variables𝑢, 𝑣, 𝑤, rotational rates 𝑝, 𝑞, 𝑟, and control surface deflections [2]. For the system identification 

applied to an aircraft, it is more convenient to use non-dimensional derivatives of the non-dimensional aerodynamic 
force and moment coefficients [𝐶𝑋 ,𝐶𝑌, 𝐶𝑍,𝐶𝑙 ,  𝐶𝑚,𝐶𝑛]. These derivatives are obtained from the following relationships 

and expressed as a combination of aerodynamic derivatives [1]. 
 

Longitudinal aerodynamic coefficients when 𝑝𝑎𝑟𝑎𝑚 𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 𝑋,𝑍, 𝑚; 

 

𝐶𝑝𝑎𝑟𝑎𝑚 = 𝐶𝑝𝑎𝑟𝑎𝑚(𝛼,𝛽,𝑞∗,𝛿ℎ,𝛿𝑙𝑒𝑓) (2.1) 

 
Lateral aerodynamic coefficients when 𝑝𝑎𝑟𝑎𝑚 stands for 𝑌, 𝑙, 𝑛; 

 

𝐶𝑝𝑎𝑟𝑎𝑚 = 𝐶𝑝𝑎𝑟𝑎𝑚(𝛼,𝛽, 𝑝∗, 𝑟∗,𝛿𝑎,𝛿𝑟 ,𝛿𝑙𝑒𝑓) (2.2) 

 

where normalized angular velocities are; 
 

𝑝∗ =
𝑝𝑏

𝑉
,    𝑞∗ =

𝑞𝑙

𝑉
,    𝑟∗ =

𝑟𝑏

𝑉
 

(2.3) 
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Equation (2.1) and equation (2.2) can be written using non-dimensional derivatives for each non-dimensional 
aerodynamic force and moment coefficients as follows: 

 
𝐶𝑝𝑎𝑟𝑎𝑚 = 𝐶𝑝𝑎𝑟𝑎𝑚0

+ 𝐶𝑝𝑎𝑟𝑎𝑚𝛼
𝛼 + 𝐶𝑝𝑎𝑟𝑎𝑚𝛽

𝛽 + 𝐶𝑝𝑎𝑟𝑎𝑚𝛿𝑒
𝛿𝑒 + 𝐶𝑝𝑎𝑟𝑎𝑚𝑞∗𝑞∗ + 𝐶𝑝𝑎𝑟𝑎𝑚𝛿ℎ

𝛿ℎ + ⋯ (2.4) 

  

where 𝑝𝑎𝑟𝑎𝑚 stands for [𝐶𝑋,𝐶𝑌,  𝐶𝑍,𝐶𝑙 ,𝐶𝑚,𝐶𝑛]. 

 In order to train the neural network, the recorded dataset is modified into specific format. The neural network 

needs input and output data for training. Therefore, the recorded values for [𝛼,𝛽,𝛿𝑒 ,𝑞∗,𝛿ℎ ,…] are supplied as input 
and the corresponding values of 𝐶𝑝𝑎𝑟𝑎𝑚 as output. Then, aerodynamic force and moment coefficient are obtained 

using mathematical equation and other properties as shown in Fig. 4. After obtaining aerodynamic force and moment 

coefficients, these values are given to the neural network and the aerodynamic model is therefore trained. Example of 
prepared input and output dataset is given in Table 1.  

 Dependencies of aerodynamic coefficients are generally taken as inputs. Note that the dependencies of 
aerodynamic coefficients are not same for each coefficient since each dimension have different influence on each 
aerodynamic coefficient. Therefore, the most effective dimensions taken for training process are shown in Table 2.   

 

Table 1 Example of neural network time series dataset format 

 

Table 2. Dependencies of aerodynamic coefficients  

Coefficient 𝒑 𝒒 𝒓 𝜶 𝜷 𝜹𝒉 𝜹𝒍𝒆𝒇 𝜹𝒂 𝜶∗ → 𝜶 > 𝟓 𝜶∗∗ → 𝜶 > 𝟏𝟎 

𝑪𝑿 X   X X X X  X X 

𝑪𝒀  X X X X  X X X X 

𝑪𝒁 X   X X X X  X X 

𝑪𝒎 X   X X X X  X X 

𝑪𝒏  X X X X  X X X X 

𝑪𝒍  X X X X  X X X X 
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When the broad range of aircraft flight envelope is considered, these aerodynamics coefficients have nonlinear 
relationships with their dependent variables. The nonlinearity in model postulation can be expressed by using 

polynomial functions or using spline functions. Especially high degree polynomials show the problem of oscillation 
when the (equally-spaced) nodes of an interval are used in the interpolation. On the other hand, spline functions can 
avoid the disadvantages of the polynomial representation. They are defined only on the subintervals, and can 

approximate nonlinearities quite well. Besides, as seen in Table 1, the angle of attack range is divided and added as 
dependencies to neural network inputs for improving performances. Parameters dependent on the angle of attack in 

longitudinal coefficients are expressed using spline functions [2] in the form 
 

(𝛼 − 𝛼𝑖)+
𝑚 = {

(𝛼 − 𝛼𝑖)
𝑚            𝛼 ≥ 𝛼𝑖

0                             𝛼 < 𝛼𝑖
 

(2.5) 

rather than the usual B-splines. 

 

 

III. Neural Network Structure 

Having prepared the input and the output datasets, we should find the weights of the nodes at the layers of a neural 
network structure. This process is referred to training the neural network. Backpropagation is the most commonly 
used method for this purpose; the essential idea of the approach is to observe the error between the real output values 

and the estimated output values by the network. Then, we perform, for instance, a gradient descent algorithm in order 
to decrease this error. The backpropagation algorithm is separated into two parts : a forward and a backward 
propagation. 

A. Forward Propagation 

 In this procedure, the neural network makes the estimation of the output given the input values using the current 
weights, which are initially randomly initialized. This weight matrix and the bias vector are defined as follows: 

𝑊1 and 𝑊2, weight matrix between input-hidden layer and hidden-output layer, (𝑛ℎ × 𝑛𝑢 𝑎𝑛𝑑 𝑛𝑦 × 𝑛ℎ) 

𝑊1𝑏 and 𝑊2𝑏, bias vector between input-hidden layer and hidden-output layer, (𝑛ℎ × 1 and  𝑛𝑦 × 1)  

where 𝑛ℎ is the number of nodes in the hidden layer, 𝑛𝑢 is number of nodes in the input layer, 𝑛𝑦 is the number of 

nodes in the output layer.  

Forward propagation steps are given in [1] as follows: 

𝑦1 = 𝑊1𝑢0 + 𝑊1𝑏 (3.1) 

𝑢1 = 𝑓(𝑦1) (3.2) 

𝑓𝑖(𝑦1) = tanh (
𝛾1

2
𝑦1(𝑖)) = 

1−𝑒−𝛾1𝑦1(𝑖)

1+𝑒−𝛾1𝑦1(𝑖)  for  𝑖 = 1,2,… , 𝑛ℎ 
(3.3) 

where 𝛾1 is the slope (gain) factor of hidden layer activation function. Similarly, 

𝑦2 = 𝑊2𝑢1 + 𝑊2𝑏 (3.4) 

𝑢2 = 𝑓(𝑦2) (3.5) 

𝑓𝑖(𝑦2) = tanh (
𝛾2

2
𝑦2(𝑖)) = 

1−𝑒−𝛾2𝑦2(𝑖)

1+𝑒−𝛾2𝑦2(𝑖)  for  𝑖 = 1,2,… , 𝑛𝑦 
(3.6) 

where 𝛾2 is the slope (gain) factor of hidden layer activation function. 
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B. Backpropagation with Momentum Term  

 The backpropagation algorithm is used with a momentum term to find an optimal weight matrix and  bias vector. 
The backpropagation algorithm tries to decrease the associated and suitably chosen cost function with changing the 

weights and the bias. 

Backpropagation steps are given as follows [1]: 

𝐸(𝑘) =
1

2
[𝑧(𝑘) − 𝑢2(𝑘)]𝑇[𝑧(𝑘) − 𝑢2(𝑘)] =

1

2
𝑒(𝑘) 𝑇𝑒(𝑘) 

(3.7) 

where 𝐸 is the sum of squared errors (SSE), 𝑧 is measured output values, and 𝑢2 is estimated output values by the 
network and 𝑘 is the index for the data. 

𝑊2(𝑘 + 1) = 𝑊2(𝑘) + 𝜇 (−
𝜕𝐸(𝑘)

𝜕𝑊2

) 
(3.8) 

𝜕𝐸(𝑘)

𝜕𝑊2
= −𝑓 ´[𝑦2(𝑘)][ 𝑧(𝑘) − 𝑢2(𝑘)] 𝑢1

𝑇(k) (3.9) 

where 𝜇 is the so-called learning rate, 
𝜕𝐸(𝑘)

𝜕𝑊2
 is the local gradients of the error cost function associated with 𝑊2. Here, 

𝑓 ´[𝑦2(𝑘)] is the derivative of the output node activation function defined by Eq. (3.6). Substituting Eq. (3.9) in Eq. 

(3.8) and denoting the result by 𝑒2𝑏, we obtain 

𝑒2𝑏(𝑘) = 𝑓 ´[𝑦2(𝑘)][ 𝑧(𝑘) − 𝑢2(𝑘)] (3.10) 

Weight update rule for the output layer with momentum term therefore can be written as 

𝑊2(𝑘 + 1) = 𝑊2(𝑘) + 𝜇𝑒2𝑏(𝑘)𝑢1
𝑇(𝑘) + Ω[𝑊2(𝑘) − 𝑊2(𝑘 − 1)] (3.11) 

Similarly, substituting Eq. (3.1) and Eq. (3.2) in Eq. (3.7) and considering the partial derivative with respect to 𝑊1, 
we obtain 

𝜕𝐸(𝑘)

𝜕𝑊1
= −𝑓 ´[𝑦1(𝑘)]𝑊2

𝑇 𝑒2𝑏(𝑘)𝑢0
𝑇(𝑘) (3.12) 

where 𝑓 ´[𝑦1(𝑘)] is the derivative of the hidden layer activation function defined by Eq. (3.3). Thus, denoting the 
result 𝑒1𝑏 it follows that 

𝑒1𝑏(𝑘) = 𝑓 ´[𝑦1(𝑘)] 𝑊2
𝑇 𝑒2𝑏(𝑘) (3.13) 

Weight update rule for hidden layer with momentum term becomes 

𝑊1(𝑘 + 1) = 𝑊1(𝑘) + 𝜇𝑒1𝑏(𝑘)𝑢0
𝑇(𝑘) + Ω[𝑊1(𝑘) − 𝑊1(𝑘 − 1)] (3.14) 

To be specific, the derivative of Eq. (3.3) and Eq. (3.6) are given as follows: 

𝑓′(𝑦𝑖) =
𝛾𝑙

2
[1 − tanh2 (

𝛾𝑙 𝑦𝑖

2
)] = 

2𝛾𝑙 𝑒 −𝛾𝑙𝑦𝑖

(1+𝑒−𝛾𝑙𝑦𝑖)2
       (3.15) 

where 𝑙 = 1, 2 is index for the input-hidden and output-output layers. These steps are recursively repeated for each 

training data indexed as 𝑘 = 1, 2,… , 𝑛𝑡𝑟𝑎𝑖𝑛, where 𝑛𝑡𝑟𝑎𝑖𝑛  is the number of samples in the training dataset. At the end 

of the recursive loop, mean square error (MSE) is computed as a stopping criterion:  
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MSE𝑇𝑟𝑎𝑖𝑛 =
1

𝑛𝑡𝑟𝑎𝑖𝑛𝑛𝑦

  ∑ ∑[ 𝑧𝑗(𝑘) − 𝑢𝑗(𝑘)]2

𝑛𝑦

𝑗=1

𝑛𝑡𝑟𝑎𝑖𝑛 

𝑘=1

 

(3.16) 

When MSE is sufficiently reduced, iteration is stopped. 

C. Kalman based Backpropagation 

 In this algorithm, the overall training procedure similar to backpropagation with the momentum algorithm. There 

is a difference in the updating part. In this method, the updating part needs to calculate Kalman gains at each layer. 
This needs some computation time, so this method is slower than the standard backpropagation algorithm. Kalman 
based backpropagation steps, additional to standard backpropagation, are given [1] as follow;  

The update equations for the output layer and hidden layer are given by 

𝑊2(𝑘 + 1) = 𝑊2(𝑘) + [𝑑(𝑘) − 𝑦2 (𝑘)]𝐾2
𝑇(𝑘) (3.17) 

𝑊1(𝑘 + 1) = 𝑊1(𝑘) + 𝜇𝑒1𝑏(𝑘)𝐾1
𝑇(𝑘) (3.18) 

where 𝐾1 𝑎𝑛𝑑 𝐾2 are the Kalman gain vectors of the size (𝑛ℎ + 1, 1) and (𝑛𝑢 + 1,1) associated with hidden layer 
and output layer, respectively, and 𝑑 is desired summation output and Kalman gains are given by  

𝑑(𝑘) =
1

𝛾
ln (

1 + 𝑧(𝑘)

1 − 𝑧(𝑘)
) 

(3.19) 

𝐾1(𝑘) =
𝐷1(𝑘)𝑢0(𝑘)

𝜆1 + 𝑢0
𝑇 (𝑘)𝐷1(𝑘)𝑢0(𝑘)

 
(3.20) 

𝐾2(𝑘) =
𝐷2(𝑘)𝑢1(𝑘)

𝜆2 + 𝑢1
𝑇(𝑘)𝐷2(𝑘)𝑢1(𝑘)

 
(3.21) 

The matrices representing the inverse of the correlation matrices of the training data are; 

𝐷1(𝑘 + 1) =
𝐷1(𝑘) − 𝐾1(𝑘)𝑢0

𝑇(𝑘)𝐷1(𝑘)

𝜆1

 
(3.22) 

 

𝐷2(𝑘 + 1) =
𝐷2(𝑘) − 𝐾2(𝑘)𝑢1

𝑇(𝑘)𝐷2(𝑘)

𝜆2

 

  (3.23) 

where 𝜆1 and 𝜆2 denote the forgetting factors. 

 In general, Kalman based backpropagation approaches are less sensitive to stochastic disturbances and therefore 
lead to a nearly linear optimization problem having fewer local minima as well as faster convergence rates [1]. 

IV. Optimization Process with Genetic Algorithm 

 The neural network structure has many other parameters which have to be tuned for an optimal result. Researchers 
having substantial experience with neural networks might find the optimum parameters within a shorter period of 

time. However, those who don't have substantial experience with neural networks might spend some time in order to 
find the optimal parameter values. In addition, in this study, to find out the optimal values for the parameters of the 
neural network structure, we utilize the genetic algorithm [9].  
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 In order to use genetic algorithm, firstly the decision of the parameters we optimize should be made: the number 
of hidden layers, slope factor of the hidden layer activation function, slope factor of the output layer activation 

function, learning rate parameter, momentum parameter, and initial random weights scale factor (randomly chosen 
initial weights are kept fixed) are optimized by the genetic algorithm. 

Having decided the parameters to be optimized, the loss (cost) function should be decided, which will be 

minimized by the genetic algorithm: mean square error (MSE) between the estimated value and actual observed value 
of the aerodynamic coefficient is chosen as the cost function below. 

MSE =
1

𝑛
∑(𝑧𝑖 − 𝑦𝑖 )2

𝑛

𝑖=1

 
(4.1) 

where 𝑛 is number of samples in the dataset, 𝑧𝑖 and 𝑦𝑖  are the actual and the estimated values for the ith observation 

in the sample, respectively. Readers should refer to [9] for details of the genetic algorithm 

V. Resampling Methods 

To evaluate the performance of the feed-forward neural network on a given dataset, we need to measure how well 
its predictions match the observed data. In the regression setting, the most commonly  used measure is the mean 
squared error: 

MSE𝑇𝑟𝑎𝑖𝑛 =
1

𝑛𝑡𝑟𝑎𝑖𝑛

∑ (𝑧𝑖 − 𝑦𝑖 )2

 𝑛𝑡𝑟𝑎𝑖𝑛

𝑖=1

 
(5.1) 

where 𝑛𝑡𝑟𝑎𝑖𝑛 is the number of samples in the training dataset, 𝑧𝑖 and 𝑦𝑖  are the actual and the estimated values for the 

ith observation in the training set. 

 However, rather than how well the method works on the training data, one is most interested in how well the 

trained model works for the data in the testing dataset which has not been used to train the network at all. That is,  

MSE𝑇𝑒𝑠𝑡 =
1

𝑛𝑡𝑒𝑠𝑡

∑ (𝑧𝑖 − 𝑦𝑖 )2

 𝑛𝑡𝑒𝑠𝑡

𝑖=1

 
(5.2) 

should be computed for assessing of the model, where 𝑛𝑡𝑒𝑠𝑡 is number of samples in the testing dataset, 𝑧𝑖 and 𝑦𝑖  are 

the actual and the estimated values for the ith observation in the testing dataset we have separated aside. 

 Adding many neural nodes to neural sets (increasing complexity), which decreases the training MSE, does not 

mean that it decreases the test MSE. When a given method yields a small training MSE but a large test MSE, it is 
called overfitting. The small changes in the training data can result in massive changes in the estimated model. In this 
case, we are modeling the random error rather than the pattern hidden in the data. This is not the desired case [10]. 

Such a situation is demonstrated in Fig. 5 [14]. We address resampling methods, which are indispensable tools in 
modern statistics, to mitigate this undesired case [10, 14]. 

The performance of the neural network is an important criterion to assess the optimized parameters. The available 

dataset is divided into training and testing dataset, firstly. The testing dataset, which is not seen in the identification 
phase, is used to assess the final performance at the end of the model identification. However, we should remark that 

in the identification phase, the training dataset can be used in different ways in order to assess the fitted model using 
various resampling methods, e.g., train-validation split, cross-validation sets, or random resamples.  Use of such 
methods are illustrated in Fig. 6, in which the enclosed box indicates that several iterations may be required to obtain 

the finally trained model to be assessed by the testing dataset. Below we describe some of the commonly used 
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validation techniques in order to have assess how well the trained model might work on the testing dataset. For more 
information on the topic, we refer to [14]. 

 

 

Figure 5. Test and training error as a function of model complexity 

 

Figure 6. Model analysis engineering flowchart 
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A. Hold-out Cross-Validation 
 It is a very simple strategy, which is also named as cross-validation set approach. It involves randomly dividing 

the available training dataset into two parts: a training dataset, and a validation dataset, illustrated in Fig. 7.a. The 
model is fit on the newly generated training dataset, and the fitted model is used to predict the responses for the 
observations in the validation set. The trained model is then used for the testing dataset. Generally, the training data 

consists of %80 of the available data set. This simple approach is easy to implement, but it has a major drawback: 
testing MSE can be highly variable, depending on which observations are included in the training and which 

observations are included in the testing datasets. 

B. K-fold Cross-Validation 

 This approach attempts to address the drawback of the hold-out cross-validation approach. This approach involves 
randomly dividing the set of observations into 𝒌 groups, or folds, of approximately equal size, illustrated in Fig. 7.b. 

The first fold is treated as a validation data, and the remaining 𝒌 − 𝟏 folds are used to train the model. The mean 

square error for the validation set (first fold) is computed. This procedure is repeated 𝒌 times; each time, a different 
group of observations is treated as a validation set. Hence the process results in 𝒌 estimates of the validation MSEs. 

The 𝒌-fold cross-validation error estimate is then computed by the average [10, 14]:   

CV(𝑘) =
1

𝑘
 ∑ MSE𝑉𝑎𝑙𝑖

 𝑘

𝑖=1

 
(5.3) 

 In contrast to the hold-out cross-validation approach, which produces different results when applied with different 
splits due to randomness in the train and validation splits, performing a 𝒌-fold cross-validation is more robust in that 

respect. Generally, the number of folds, 𝒌, to be used in this approach for a given 𝒏 observations, as recommended in 

[15], is 

𝑘 =  min {√𝑛,10} (5.4) 

 

C. Bootstrap 

 The bootstrap method is used to quantify the uncertainty associated with a given estimate by sampling a dataset 
with replacement, which means that the same observation can occur more than once in the bootstrap dataset. We 

obtain distinct data sets by repeatedly sampling observations from the original dataset, illustrated in Fig. 7.c. Having 
𝑁 randomly chosen bootstrap sets out of the training data, the model is trained to calculate each corresponding MSE. 

Hence, the overall MSE for the bootstrap approach the average is computed as an indicator of the testing error: 

MSE𝐵𝑆 =
1

𝑁
 ∑MSE𝐵𝑆 𝑖

 𝑁

𝑖=1

 

 

(5.5) 
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(a)  (b) (c) 

 

Figure 7. Resampling Methods. (a) Hold-out Cross-Validation (b) K-fold Cross-Validation (c) Bootstrap  
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VI. Results and Conclusion 

 Neural network performance results are given in this section. The optimized parameters are found with the genetic 
algorithm for three different resampling methods. Optimized parameters are used to calculate the mean square errors 
for training, validation, and testing datasets.  

A. Aerodynamic Coefficient Results  

𝑪𝑿 Aerodynamic Coefficient 

The resampling methods comparison on training, validation, and testing datasets are given in Fig. 8.  

 

Figure 8. Resampling methods comparison on training, validation and testing datasets for 𝑪𝑿  

 Time history plots compare the time histories of flight measured and model estimated responses, which is a 

standard procedure to qualitatively evaluate the model fidelity. Any discrepancies in the match between the two 
responses often provide important clues to improve the model fidelity. The time history results for 𝐶𝑥 in training 

dataset is given in Fig. 9. No discrepancy is observed in the plot. 
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Figure 9. Time history result for 𝑪𝑿 in training dataset 

 Cross Plots of Residuals, the test of the residuals (error between the predicted and measured response) is a good 
indicator of the assumptions made. Flat spread of residual centered around zero is the ideal case whereas non-flat 
spread indicates that the model needs improvement with the variable observed. 

 
 Residual cross plot for 𝐶𝑋 with respect to air data, pitch rate, and control surface deflections in training dataset are 

given in Fig. 10, and Fig. 11. 
 

 

Figure 10. Residual cross plot, results for 𝑪𝑿  with respect to 𝜶,𝜷,𝐚𝐧𝐝 𝒒 in training dataset 
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Figure 11. Residual cross plot results for 𝑪𝑿  with respect to control deflections in train dataset 

 
 As shown in Fig. 10, cross plot of 𝐶𝑋 is more dispersed in higher 𝛼 values. With 𝛼 is getting higher, residual error 

of model also is getting higher. However, residual error of cross plot is still in acceptable range.  
 

 In Fig. 10, higher 𝛽 effect to residual error, can be seen in cross plot of 𝐶𝑋 vs 𝛽. As seen in figure, higher 𝛽 cause 
more residual error. However, error is still small and it is in acceptable range. In the same figure, residual cross plot 

of 𝐶𝑋 is affected by aircraft pitch rate (q). Pitch rate effect have similar behavior with 𝛽 effect. Both of their residual 
error is getting higher, when q/𝛽 is getting higher. However, there are more residual error, when we talk about pitch 

rate. As seen in figure, residual error is still in acceptable range. 

 
 In Fig. 11, residual cross plot of control surfaces can be seen. Although estimation error is still in acceptable range, 
cross plot of elevator deflection is not flat, when comparing others. Residual cross plot of leading-edge flap deflection 

is getting higher error, when leading edge flap deflection is getting higher value. But, still in acceptable range. This 
residual plot indicates that our trained model for 𝐶𝑋 can estimate successfully. 

 
 As stated earlier, the results of training data are significant but the final performance of the aerodynamic model 
should be tested with testing data reserved and are not used in the identification phase. The time history results for 𝐶𝑋 

in testing dataset are shown in Fig. 12. 
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Test dataset time history results for 𝐶𝑋 aerodynamic coefficient: 

 

Figure 12. Time history result for 𝑪𝑿 in the test dataset 

 

 In Fig. 12, time history of 𝐶𝑋 variable for testing dataset is plotted. Measured and estimated data are almost the 
same. As seen in this figure, the residual error is so small that our aerodynamic coefficient model for 𝐶𝑋 is acceptable.  

𝑪𝒁 Aerodynamic Coefficient 

The resampling methods comparison on train, validation, and test datasets are given in Fig . 13. 

 

 

Figure 13. Resampling methods comparison on training, validation and testing datasets for 𝑪𝒁  
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Figure 14. Time history result for 𝑪𝒁 in the testing dataset 

𝑪𝒎 Aerodynamic Coefficient 

The resampling methods comparison on train, validation, and test datasets are given in Fig. 15. 

 

Figure 15. Resampling methods comparison on train, validation and test datasets  for 𝑪𝒎 
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Figure 16. Time history result for 𝑪𝒎 in the testing dataset 

 As seen in Fig. 8, Fig. 13, and Fig. 15, the 𝑘-fold cross-validation approach is superior to the other resampling 
approaches we used. As is also seen that the bootstrap approach gives a better performance, in general, than the hold-

out cross-validation approach in the training and validation dataset; however, sometimes it is just the opposite in the 
testing dataset. 

B. Proof of Match Results 

 The capability of identified model is determined by comparing the flight measured system responses with those 

predicted by the model. In flight vehicle applications terminology, this process is called proof-of-match; it is an 
important part of flight simulator certification and acceptance. In this proof-of-match process, the identified 

aerodynamic model is kept fixed [1]. 
 
 To eliminate subjective evaluation of the match between measured system responses and model predicted outputs, 

FAA has specified guidelines in terms of tolerances for each variable, depending upon the nature of the validation 
test. As an example, Table 3 provides the definition of three tests, giving tolerances, flight conditions to be tested for 
each. For complete list of validation test, the reader is referred to [16, 17]. 

 
 Longitudinal parameters matching is performed in two phases. The static part of aerodynamic coefficients is 

validated with Longitudinal Maneuvering Stability and Longitudinal Static Stability tests. Dynamic part of 
aerodynamic coefficient is validated with the Short-Period maneuver.  
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Table 3: FAA validation tests and tolerance values 

TEST 

NUMBER 

TITLE PARAMETERS TOLERANCES FLIGHT 

CONDITION 

2c(6) Longitudinal Maneuvering 

Stability 

ELEVATOR ±1°  or ±10%  
 

 

CRUISE 

APPROACH 

LANDING 

2c(7) Longitudinal Static  

Stability 

ELEVATOR ±1°  or ±10%  
 

APPROACH 

2c(10) Short Period Dynamics PITCH ANGLE 

PITCH RATE 

NORMAL ACCELERATION 

±1.5° 
±2°/Sec 

±1g 

CRUISE 

Longitudinal Maneuvering Stability 

 The objective of this test is to demonstrate that the simulation of maneuvering stability conforms to the aircraft. 

The test is performed by establishing a steady-state condition at several intermediate bank angle up to the maximum 
angle. A critical factor for this test to obtain an accurate trim condition for steady turning flight for prescribed bank 
angles. Steady-state aircraft trim conditions for turning flight can be found using Newton-Raphson method [18]. The 

results are "snapshot" once the airplane has been stabilized at the required bank angle and at the trim airspeed (three 
different airspeed). Altitude is set to constant in each case. 

 

Figure 17. Low Speed Maneuvering Stability 
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Figure 18. Mid Speed Maneuvering Stability 

 

Figure 19. High Speed Maneuvering Stability 

 The tolerance bounds are lower and upper values which the estimated results are expected to lie between. As it 

seen in Fig. 17 - 19, the estimated results  are in those tolerance bounds. It means our estimated coefficients are 
compatible the actual aircraft. The estimated results are closer to tolerance bounds, which means at low airspeed, the 

residual between the estimated and measures is a bit higher.  
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Longitudinal Static Stability 

 The objective of this test is to demonstrate that the simulator static longitudinal stability characteristics conform 

to the aircraft. Longitudinal control command is applied to the airplane in order to get a deviation from trimmed 
airspeed, and elevator deflection is used to maintain a steady-state condition at different speeds as shown in Fig. 20. 

 

Figure 20. Longitudinal Static Stability 

 The estimated results are in tolerance bounds. It means our estimated coefficients are compatible with the actual 

aircraft. The estimated results are closer to tolerance bounds at low airspeed corresponding to high angle of attack 
values. As we already observed in cross plot of aerodynamic coefficients residual with respect to angle of attach, the 

residual between the estimated and measured values at high angle of attack is a bit higher. 

Short Period Maneuver 

 Short period dynamics is evaluated by exciting the short period mode under the cruise condition by applying a 

brief (one second or less) longitudinal control input in one direction then allowing the airplane to freely respond. 

 The flight measurements with these tolerances define a band within which the model predicted response must lie. 
For the other variables, particularly those of the cross axis, a qualitative match which shows correct trends, is usually 

considered as adequate. The model adequacy is quite apparent from the figure. The result is fairly good as seen in Fig. 
21. 
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Figure 21. Short period dynamics 

 The solid lines are obtained from measured data plus/minus the tolerances specified in Table 3, and the dashed 

line shows the model predicted output, which is quite well within the allowed band for Level-D model fidelity. 
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