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High-fidelity aerodynamic dataset generation is one of the most significant components of the 

aircraft flight simulation, while it is a time consuming and costly process. Data fusion 

techniques suggest that, instead of using high fidelity data for entire aerodynamic dataset, a 

incorporating combination of high-fidelity and low-fidelity data is a more cost-effective one. 

The objective of data fusion is to obtain high-fidelity dataset accuracy by combining less 

amount of high-fidelity dataset and more amount of low-fidelity dataset. In this paper, two 

different data fusion approaches, namely modified Variable-Complexity Modelling and co-

Kriging, are applied to F-16 fighter aircraft. Wind tunnel test data is utilized as the high-

fidelity dataset while data obtained by a semi-empirical approach (Digital Datcom) is used as 

the low-fidelity dataset.         

Nomenclature 

ℎ𝑓  = High-Fidelity 

𝑙𝑓  = Low-Fidelity 

𝐶𝐿  = Lift Force Coefficient 

𝐶𝐷  = Drag Force Coefficient 

𝐶𝑚  = Pitching Moment Coefficient 

𝛼   = Angle of Attack 

𝛽   = Angle of Sideslip 

𝛿ℎ  = Horizontal Tail Deflection  

𝛿𝐿𝐸𝐹  = Leading Edge Flap Deflection  

GA  = Genetic Algorithm 

X  =  Set of Sample Data 

Y  =  Set of Observed Response Data  

n   =    Number of samples in the Dataset 

k    =   Dimension Number of One Sample Data 
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𝜇   =   Mean Value of Dataset 

𝜎   =  Variance of Dataset 

𝑐𝑜𝑟  =  Correlation of Dataset 

𝛹   =  Correlation Matrix of 𝑛𝑥𝑛 Dataset 

MLE  =   Maximum Likelihood Estimation   

CFD  =   Computational Fluid Dynamics 

VCM = Variable Complexity Modelling 

RMSE  =  Root Mean Square Error 

I. Introduction 

Aircraft flight simulation is a key component of modern aircraft design, certification process and aircraft pilots 

training. How much the aircraft in flight simulation reveals the actual aircraft flight characteristic depends on various 

factors, one of which is the aerodynamic dataset accuracy. The aerodynamic model is the core of a flight simulator.  

An error in the aerodynamic model can lead to a simulation which might fail in the qualification process [1]. Therefore, 

flight simulator needs the high-fidelity datasets to provide the real aircraft behavior to the pilots. There are several 

sources to obtain the aerodynamic dataset. These are semi-empirical datasheet methods, linear flow solvers, nonlinear 

flow solvers, small scale wind tunnel tests, full scale wind tunnel tests and flight tests in the increasing order of fidelity. 

As fidelity increases, processing time and cost increase.  

 

Data fusion is one of the functional approaches to obtain aerodynamic dataset. Since using only high-fidelity wind 

tunnel test or high-fidelity computational analysis for the aerodynamic dataset generation is time consuming and 

expensive. The main motivation of data fusion is to achieve high-fidelity data in a less time-consuming fashion. In 

this study we implemented  two different data fusion techniques being “Variable-Complexity Modelling” (VCM) 

[2].and co-Kriging method. In the modified VCM approach, there is an increment function which computes that how 

much value should be added to low-fidelity data, in order to obtain high-fidelity data when desired. In this approach, 

Kriging method is used for interpolation. Although Kriging is a global interpolation technique, it does not assume a 

global form for the function. Kriging try to interpolate function which goes exactly given data points. Kriging model 

could interpolate merged dataset around high-fidelity data; hence, Kriging such an interpolation property is best suited 

for data fusion. In addition, introducing new data points to Kriging will increase the accuracy of predicted model [2]. 

 

The co-Kriging approach developed for multi-fidelity analysis is another data fusion algorithm. In order to use 

low-fidelity data, some form of correction process is formulated [3] [4]. This correction process models the differences 

between high-fidelity and low-fidelity data. co-Kriging is a form of Kriging which correlates the multiple-fidelity 

dataset [3] [4].  

 

In this paper, the wind tunnel test data is considered as high-fidelity dataset and the data from semi-empirical 

approach (Datcom) is considered as low-fidelity dataset. Aerodynamic dataset is generated using the two data fusion 

approaches described above. First modified VCM approach is applied to high-fidelity and low-fidelity datasets, then 

the co-Kriging approach is also applied to both datasets.  

 

 The rest of the paper is organized as follows: Section II presents data evaluation. Section III and IV discuss 

the modified variable complexity modelling approach and co-Kriging approach respectively. The results of both 

approaches are presented and compared in Section V and, conclusions are given in Section VI. Finally, the appendix 

shows how to obtain the partitioned inverse of matrix. 

II. Data Evaluation 

 For aerodynamic database generation, various computational and experimental methods can be utilized with 

respect to the cost and accuracy requirements of the design phase. A summary of these methods with sample tools and 

classifications are provided in [5] [6]. As expected, the higher the cost, the more accurate the aerodynamic database. 

The resource and time cost of each method are essentially tens to hundreds times higher than those of the less accurate 

method [7], as seen in Figure 1. 
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Figure 1. Aerodynamic database generation methods with examples 

 

 Semi-empirical methods are based on the experimental results that are generalized and formulized with these 

methods. Datcom and ESDU are typical examples of this approach. The computational effort is significantly small as 

compared to other approaches. In fact, a full flight dataset can be obtained in a couple of minutes. They do not need 

any computational grid generation.    

 

 Linear flow solvers are based on potential flow theory. Panel and vortex lattice methods (VLM) are typical 

examples of this approach. They may have some corrections for the compressibility, boundary layer, dynamic motions 

or nonlinear flow characteristics. They require computational grids, however, the size of grids are much smaller than 

nonlinear flow solvers. VSaero, Panair, Tranair and AVL are typical examples of Panel and vortex lattice methods. 

The linear flow regimes can be computed more accurate than semi empirical methods while the accuracy significantly 

decreases as the flow non-linearity increases [5]. Semi-empirical methods and linear flow solvers are generally used 

in conceptual design phase. 

 

 Nonlinear flow solvers attempt to solve all conservation equations including continuity, momentum and energy 

equations. They can cover all turbulence models, compressibility and boundary layer related problems. Finite volume 

and finite element methods are considered in the nonlinear flow solver methods. Ansys-Fluent, Star-CCM+, 

OpenFoam, CFL3D and SU2 are widely known nonlinear flow solvers. Such methods have been studied accurately 

within at low angle of attack sweeps (linear region) in subsonic-supersonic regions but the results in transonic region 

including shock-induced separations and/or at high angle of attack sweeps (nonlinear region) are different from the 

actual aerodynamic data due to highly unsteady flow characteristic. It is difficult to analyze dynamic effects including 

forced oscillations and spin conditions using such methods. They require high computational power than linear flow 

solvers due to more effort in pre-processing and computations [5]. 

 

 As for wind tunnel tests, based on the principle of scale similarity, aerodynamic database are generated through 

experiments. A wind tunnel test model should be designed and manufactured in order to conduct these experiments 

which result in a much more costly process when compared with the computational approaches. Nevertheless, highly 

unsteady flight conditions in nonlinear flow solvers may only be solved with wind tunnel tests. In small scale wind 

tunnels, some scaling issues such as Reynolds number, aeroelastic characteristics, and so on exist so that full scale 

wind tunnel is preferred [8]. Supersonic aerodynamics, forced oscillation and spin characteristics can be obtained in 

small scale wind tunnels while take off-landing characteristics are accurately observed in large scale wind tunnels. 

Forced oscillation and high-speed tests can also be conducted in large scale wind tunnels. Surely, there exists some 



4 

deviation from actual aerodynamic data because of Reynolds correction, the experimental system errors, the influence 

of wind tunnel airflow quality, the interference of tunnel walls/supports and so on [7]. 

 

 To eliminate the errors in wind tunnel tests, flight tests are the final alternatives. Aerodynamic database can be 

generated from a flight test data using a comprehensive system identification methods. Aerodynamic data should be 

validated with flight tests for further aircraft development. 

 

 In this study, aerodynamic database of F-16 aircraft is constructed by Digital Datcom as a function of the angle of 

attack and the horizontal tail deflection. Moreover, wind tunnel tests are adapted to improve the database. The former 

represents the low-fidelity dataset while the latter does high-fidelity dataset. The wind tunnel results are obtained from 

the open source F-16 aircraft data [9]. Digital Datcom includes empirical methods for aerodynamic data predictions. 

It enables fast and reasonably accurate computations in conceptual design phases. 

 

 The main geometry of F16 is obtained from OpenVSP-Hangar as shown in Figure 2 [10]. The fuselage geometry 

is prepared from this geometry while the wing, horizontal tail and vertical tail geometries are modified with respect 

to a supersonic wind tunnel test campaign as in [11]. The model is in 1/15 scale. 

 

 
Figure 2. Top, isometric, bottom and left-side view of F16-OpenVSP geometry 

 

 The aerodynamic database is created for clean aircraft and horizontal tail deflections. The angle of attack ranges 

between 0° and 30° while the Mach number is set to 0.2 at sea level flight condition. For the non-dimensional 

coefficients, the mean aerodynamic chord is selected as 3.45 m while the span is set to 9.15 m. Additionally, the wing 

area is set to 27.86 𝑚2. 

 

 In Figures 3 - 8, lift, drag and pitch moments coefficients of F-16 aircraft geometry are compared. The coefficients 

are obtained from Datcom and wind tunnel test reference, which is an open source data of F-16 aircraft. Since the 

main idea is to improve the data quality of a low-fidelity model, these figures are helpful to observe differences 

between low- and high-fidelity models. 

 

 Particularly, in Figures 3 - 5, angle of attack sweeps of drag, lift and pitch moment coefficients are provided for 

different horizontal tail deflections. As seen from these figures, lift and drag coefficients of Datcom are much more 

reliable than the pitch moment coefficient. Since the section-wise pressure distribution data are not computed in 

Datcom, pitch moment distribution on the wing and horizontal tails may deviate from the experimental data. 

Additionally, the horizontal tail of the experimental data is smaller than the Datcom model since the TP1538 data is 
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based upon the YF-16 geometry. Nevertheless, Datcom model can be improved with respect to the reference wind 

tunnel data. 

 
Figure 3. Comparison of drag coefficient of TP1538 and Datcom for various horizontal tail deflections 

 

 
Figure 4. Comparison of lift coefficient of TP1538 and Datcom for various horizontal tail deflections 

 



6 

 
Figure 5. Comparison of pitch moment (at 25% of MAC) coefficient of TP1538 and Datcom for various horizontal 

tail deflections 

 

 On the other hand, Figures 6- 8, horizontal tail deflection sweeps of drag, lift and pitch moment coefficients are 

provided for different angle of attack conditions. The deflection effects in drag coefficient are closer at 0° of angle of 

attack while the remaining results are all deviate from the wind tunnel data. Nevertheless, the deviations are observed 

as shifts in drag coefficient and as rotations in pitch moment and lift force coefficients.  

 

 
Figure 6. Comparison of drag coefficient of TP1538 and Datcom for various horizontal tail deflections 
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Figure 7. Comparison of lift coefficient of TP1538 and Datcom for various horizontal tail deflections 

 

 
Figure 8. Comparison of pitch moment (at 25% of MAC) coefficient of TP1538 and Datcom for various angle of 

attack values 
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III. Modified Variable Complexity Modelling Approach 

A. Building Kriging Model 

In this section, Kriging interpolation is constructed in order to use the modified Variable-Complexity Modelling 

(VCM) model and the formulation follows [4]. 

Let X be the set of sample data and y be the observed responses defined as  

 

𝑋 =  {𝑋(1), 𝑋(2), 𝑋(3), … , 𝑋(𝑛)} (1) 

 

𝑦 =  {𝑦(1), 𝑦(2), 𝑦(3), … , 𝑦(𝑛)} (2) 

where n is the number of sample data. 

Observed responses are thought as if they are from a stochastic process. So, observed responses are denoted by set 

of random vectors as follows: 

 

  

𝑌 =  (
𝑌(𝑋(1))

⋮
𝑌(𝑋(𝑛))

) (3) 

 

These random variables are correlated with each other using basis function expression:  

 

𝑐𝑜𝑟[𝑌(𝑋(𝑖)), 𝑌(𝑋(𝑙)) ] = exp (−∑ 𝜃𝑗|𝑋𝑗
(𝑖)

− 𝑋𝑗
(𝑙)

|
𝑝𝑗

𝑘

𝑗=1

) (4) 

 

 Basis function structure mentioned in Eq. (4), it is special form of Gaussian radial basis function used in Kriging 

models. Where Gaussian radial basis function has 1 𝜎2⁄  , Kriging basis function has a vector 𝜃 = {𝜃1, 𝜃2, 𝜃3, … , 𝜃𝑘}
𝑇 

which allows the width of each basis function to vary from variable to variable. Also, Gaussian basis function 𝑝 value 

is fixed at 2. However, Kriging basis function 𝑝 values also vary 𝑝 ∈ [1,2]. Kriging exponent can be written as vector 

𝑝 = {𝑝1, 𝑝2 , 𝑝3 , … , 𝑝𝑘}
𝑇, where 𝑘 is dimension number of each sample in dataset. In other words, 𝑘 expresses the 

number of dependencies of each aerodynamic coefficient. In this study, Kriging basis function 𝑝 values are taken as 

2 for each dimension in order to reduce the computational complexity. Here, 𝑖 and 𝑙 are the numbers of samples in the 

dataset, and such that 1 ≤ 𝑖, 𝑙 ≤ 𝑛. 

 

 Having defined the Kriging basis function, the 𝑛 x 𝑛 correlation matrix of all the observed data becomes 

 

𝛹 = 

[
 
 
 
 
𝑐𝑜𝑟[𝑌(𝑋(1)), 𝑌(𝑋(1)) ] 𝑐𝑜𝑟[𝑌(𝑋(1)), 𝑌(𝑋(2)) ]

𝑐𝑜𝑟[𝑌(𝑋(2)), 𝑌(𝑋(𝑙)) ] 𝑐𝑜𝑟[𝑌(𝑋(2)), 𝑌(𝑋(2)) ]

⋯ 𝑐𝑜𝑟[𝑌(𝑋(1)), 𝑌(𝑋(𝑛)) ]

⋯ 𝑐𝑜𝑟[𝑌(𝑋(2)), 𝑌(𝑋(𝑛)) ]

⋮ ⋮
𝑐𝑜𝑟[𝑌(𝑋(𝑛)), 𝑌(𝑋(𝑙)) ] 𝑐𝑜𝑟[𝑌(𝑋(𝑛)), 𝑌(𝑋(2)) ]

⋱ ⋮
⋯ 𝑐𝑜𝑟[𝑌(𝑋(𝑛)), 𝑌(𝑋(𝑛)) ]]

 
 
 
 

 (5) 

 

To represent the correlation matrix of the set of random variables (𝑌). Each sample point is correlated with each other 

in the given dataset with this correlation matrix 𝛹. Each sample is correlated with other sample point using absolute 

distance between them using |𝑋𝑗
(𝑖)

− 𝑋𝑗
(𝑙)

| formulation and parameters 𝜃𝑗 and 𝑝𝑗. Again, in this formulation 𝑖 and 𝑙 

express the number of samples in dataset and 𝑗 represents each dimension in one sample point. Note that, we have 

1 ≤ 𝑖, 𝑙 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑘 and 𝑛 is the number of samples and 𝑘 is the number of dimensions.  

 

 In Kriging basis function, 𝜃 and 𝑝 values are to be estimated.  Thus, the genetic algorithm (GA) optimization 

method is used, in which, 𝜃 and 𝑝 are the design parameters. Basically, GA minimizes a cost function using these 

design parameters in order to find the optimum values for the design parameters. For this purpose, maximum 

likelihood formulation is chosen for cost function. 
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 In maximum likelihood estimation (MLE), it is assumed that the likelihood function  𝐿(𝑌(1), 𝑌(2), … , 𝑌(𝑛) | 𝜇, 𝜎), 

where 𝜇 and 𝜎 are distribution parameters, is of the form  

 

𝐿(𝑌(1), 𝑌(2), … , 𝑌(𝑛) | 𝜇, 𝜎) =  
1

(2𝜋𝜎2)𝑛/2
exp [−

∑(𝑌𝑖 − 𝜇)2

2𝜎2
] (6) 

 

and that it can be expressed in terms of the sample data, y,  

 

𝐿 =  
1

(2𝜋𝜎2)𝑛/2|𝛹|1/2
exp [−

(𝑦 − 1𝜇)𝑇𝛹−1(𝑦 − 1𝜇)

2𝜎2
] (7) 

 

where 1 is the 𝑛 x 1 vector of ones. We also assume that each observation is independent and identical distributed. 

 

 The mathematical problem will be simpler, if we use the log-likelihood function by invoking the natural logarithm 

to obtain 

 

ln(𝐿) = −
𝑛

2
ln(2𝜋) −

𝑛

2
ln(𝜎2) −

1

2
ln(𝛹) −

(𝑦 − 1𝜇)𝑇𝛹−1(𝑦 − 1𝜇)

2𝜎2
 (8) 

 

 Thence, in order to find maxima of Eq. (8), by taking derivatives of Eq. (8) with respect to 𝜇 and 𝜎2 and setting 

the to zero: maximum likelihood estimates are then obtained for 𝜇 and 𝜎2. 

 

𝜇̂ =
1𝑇𝛹−1𝑦

1𝑇𝛹−11
 (9) 

 

𝜎̂2 =
(𝑦 − 1𝜇)𝑇𝛹−1(𝑦 − 1𝜇)

𝑛
 (10) 

 

 When Eq. (9) and Eq. (10) are substituted back into Eq. (8) and constant terms are removed, we obtain the log-

likelihood function as follows: 

 

ln(𝐿) ≈ −
𝑛

2
ln(𝜎2) −

1

2
ln|𝛹| (11) 

 

  Therefore, we use the log-likelihood function as the cost function as the objective in GA. As seen in Eq. (11), 

there is the correlation matrix which depends on 𝜃 and 𝑝, parameters. In order to reduce the complexity and calculation 

time, in this paper, besides taking 𝑝 as 2, 𝜃 is constrained within the upper and lower limit values 102 and 10−3, 

respectively. 

 

 Implementing the genetic algorithm  in order to find the optimal values for 𝜃, the correlation matrix 𝛹 is therefore 

obtained optimally. In next stage, Kriging prediction will be mentioned.   

B. Kriging Prediction 

 In this section, Kriging correlation matrix is used to make prediction for new values based on the observed data. 

The derivation of the Kriging predictor follows the idea given in [12]. 

  

 As the correlation parameters are found by GA to maximize log-likelihood function of observed data 𝑦, the new 

prediction 𝑦̂ at 𝑋 should be consistent with the observed data and therefore with the correlation. So, prediction should 

maximize the likelihood of the sample data and prediction itself by using the correlation parameters which are found 

in the previous section. 

 

 In order to achieve this, augmented observed data and augmented correlation matrix are defined by 
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𝝍 = 

(

 
 

𝑐𝑜𝑟[𝑌(𝑋(1)), 𝑌(𝑋) ]

𝑐𝑜𝑟[𝑌(𝑋(2)), 𝑌(𝑋) ]

⋮
𝑐𝑜𝑟[𝑌(𝑋(𝑛)), 𝑌(𝑋) ])

 
 

=

(

 

𝜓(1)

𝜓(2)

⋮
𝜓(𝑛))

  (12) 

 

 and 

 

𝛹̃ =  (
𝛹 𝝍

𝝍𝑇 1
) (13) 

 

respectively. Augmented observed data 𝑦̃ =  {𝑦𝑇 , 𝑦̂ } and the vector of correlation are defined using the observed and 

the new prediction. Hence, the log-likelihood of augmented data becomes 

 

ln(𝐿) = −
𝑛

2
ln(2𝜋) −

𝑛

2
ln(𝜎̂2) −

1

2
ln|𝛹̃| −

(𝑦̃ − 1𝜇̂)𝑇𝛹̃−1(𝑦̃ − 1𝜇̂)

2𝜎̂2
 (14) 

 

Here, only the last term of log-likelihood expression depends on the new prediction 𝑦̂, so we can consider just last 

term in  the log-likelihood maximization process. Substituting the augmented variable, 𝑦̃ and 𝛹̃ yields 

 

ln(𝐿) ≈

−(
𝑦 − 1𝜇̂
𝑦̂ − 𝜇̂

)
𝑇

(
𝛹 𝜓

𝜓𝑇 1
)

−1

(
𝑦 − 1𝜇̂
𝑦̂ − 𝜇̂

)

2𝜎̂2
 

(15) 

 

 In order to maximize this log-likelihood expression, firstly, augmented correlation matrix should be inversed using 

partitioned inverse method [13], described also in Appendix-A: 

 

𝛹̃−1 = (
𝛹−1 + 𝛹−1𝝍(1 − 𝝍𝑇𝛹−1𝝍)−1𝝍𝑇𝛹−1 −𝛹−1𝝍(1 − 𝝍𝑇𝛹−1𝝍)−1

−(1 − 𝝍𝑇𝛹−1𝝍)−1𝝍𝑇𝛹−1 (1 − 𝝍𝑇𝛹−1𝝍)−1 ) (16) 

 

which, then, simplifies Eq. (15) to 

 

ln(𝐿) ≈ (
−1

2𝜎̂2(1 − 𝝍𝑇𝛹−1𝝍)
) (𝑦̂ − 𝜇̂)2 + (

𝝍𝑇𝛹−1(𝑦 − 1𝜇̂)

𝜎̂2(1 − 𝝍𝑇𝛹−1𝝍)
) (𝑦̂ − 𝜇̂) (17) 

 

Hence, the maximum of log-likelihood estimate 𝑦̂ can be found by differentiating and setting to zero: 

 

(
−1

𝜎̂2(1 − 𝝍𝑇𝛹−1𝝍)
) (𝑦̂ − 𝜇̂) + (

𝝍𝑇𝛹−1(𝑦 − 1𝜇̂)

𝜎̂2(1 − 𝝍𝑇𝛹−1𝝍)
) = 0 

 

(18) 

which results in 

 

𝑦̂ = 𝜇̂ + 𝝍𝑇𝛹−1(𝑦 − 1𝜇̂) (19) 

 

C. Modified Variable Complexity Model Implementation 

 In this section, Modified Complexity Model implementation is constructed using Kriging interpolation of the 

previous sections.  

 

 In modified VCM approach, data fusion function is approximated using Eq. (20): 

 

𝑓(𝑥) ≈  𝑓𝑙𝑓(𝑥) −  𝛽(𝑥) (20) 
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where 𝑓𝑙𝑓 is low-fidelity Kriging interpolation model which created using low-fidelity dataset, 𝛽 is the increment 

function which describes the difference between the low-fidelity Kriging interpolation model prediction and high-

fidelity data points for each point in high fidelity dataset; it is defined by 

 

𝛽(𝑥𝑜) =  𝑓ℎ𝑓(𝑥𝑜) − 𝑓𝑙𝑓(𝑥𝑜) (21) 

 

 The modified VCM algorithm (taken from [2]): 

 

1. Low-fidelity Kriging interpolation model is build using low-fidelity dataset.  

2. Predict low-fidelity values for each data point in high-fidelity dataset. This step is necessary, because given dataset 

probably is not taken in same aerodynamic condition. 

3. At each high-fidelity data point, the increments or differences are calculated between low-fidelity data which 

calculated in step-2 and high-fidelity data. 

4. Increment function in Eq. (21) is calculated by interpolating the set of increments or differences data which are 

found in step-3 using Kriging interpolation approach. 

5. Data fusion function in Eq. (20) is simple summation of low-fidelity Kriging and increment Kriging model for 

desired data point.  

 

IV. Co-Kriging Approach 

 Using combination of large amount of low-fidelity data and small amount of high-fidelity data increases the 

accuracy of high-fidelity dataset function. In order to use low-fidelity data with high-fidelity data, some correction 

process should be defined and applied to low-fidelity data. This correction models the difference between low-fidelity 

and high-fidelity data. Actually, the modified VCM is a kind of correction processes. The modified VCM models the 

relation between low and high-fidelity data. Before, derivation of complex correction process, the correction process 

is simplified. If sample location of low-fidelity data, and high-fidelity data are same (𝑋ℎ𝑓⸦𝑋𝑙𝑓). The correction 

process takes the simple form:  

 

𝑦ℎ𝑓 = 𝑍𝜌𝑦𝑙𝑓 + 𝑍𝑑 (22) 

 

where, high-fidelity values 𝑦ℎ𝑓 at 𝑋ℎ𝑓 and low-fidelity values 𝑦𝑙𝑓 at 𝑋𝑙𝑓. As seen in Eq. (22), basically, low-fidelity 

𝑦𝑙𝑓 values multiply with scaling factor 𝑍𝜌 and adding the shifting factor to obtain high-fidelity 𝑦𝑙𝑓 values. If the 

correction process is simple like in Eq. (22), it can be said that using large amount of low-fidelity data with correction 

could make more accurate prediction than less amount of high-fidelity data [3]. However, correction process is not 

always simple. Generally, sample point locations of high and low-fidelity data are not the same. Therefore, we need a 

more powerful method in order to calculate correction between low- and high-fidelity data. Therefore in the next 

section, a more powerful, and more complex co-Kriging method, is introduced and formulated following the work in 

[3]. 

A. Building Co-Kriging Model 

 Co-Kriging is modified form of Kriging method. Additional to Kriging method, co-Kriging also correlates multiple 

sets of data. High-fidelity data with values 𝑦ℎ𝑓 at 𝑋ℎ𝑓 and low-fidelity data with values 𝑦𝑙𝑓 at 𝑋𝑙𝑓. These data are 

concatenated as follows: 

 

𝑋 = (
𝑋𝑙𝑓

𝑋ℎ𝑓
) =

(

 
 
 
 

𝑋𝑙𝑓
(1)

⋮

𝑋𝑙𝑓
(𝑛𝑙𝑓)

𝑋ℎ𝑓
(1)

⋮

𝑋ℎ𝑓
(𝑛ℎ𝑓)

)

 
 
 
 

 (23) 

 

As with Kriging derivation, sample points 𝑋 are considered as stochastic processes. Therefore, observed response are 

presented by a set of random vectors 
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𝑌 = (
𝑌𝑙𝑓(𝑋𝑙𝑓)

𝑌ℎ𝑓(𝑋ℎ𝑓)
) =

(

 
 
 
 

𝑌𝑙𝑓(𝑋𝑙𝑓
(1))

⋮

𝑌𝑙𝑓(𝑋𝑙𝑓
(𝑛𝑙𝑓))

𝑌ℎ𝑓(𝑋ℎ𝑓
(1))

⋮

𝑌ℎ𝑓(𝑋ℎ𝑓
(𝑛ℎ𝑓)))

 
 
 
 

 (24) 

 

 In co-Kriging derivation, we use auto-regressive model from [14]. Briefly, if the high-fidelity value 𝑦ℎ𝑓 is known 

at 𝑥(𝑖), there is no contribution of low-fidelity value 𝑦𝑙𝑓  at point 𝑥(𝑖). That means, we assume that the high-fidelity 

data is true and low-fidelity data contains all of the error terms. 

 

 Using auto-regressive model, high fidelity values can be approximated by multiplying low-fidelity values with 

constant scaling factor 𝜌 plus a Gaussian process 𝑍𝑑: 

 

𝑍ℎ𝑓(𝑋) = 𝜌𝑍𝑙𝑓(𝑋) + 𝑍𝑑(𝑋) (25) 

 

where, 𝑍ℎ𝑓(. ), 𝑍𝑙𝑓(. ) and 𝑍𝑑(. ) are Gaussian processes. They represent the local features of high- and low-fidelity 

data and the correlation between them is given in Eq. (4). Covariance matrix is defined as 𝑐𝑜𝑣[𝑌(𝑋), 𝑌(𝑋)] =
𝜎2𝛹(𝑋, 𝑋), where 𝛹 is correlation matrix defined in Eq. (5). For co-Kriging, covariance matrix is constructed below 

in Eq. (26), Eq. (27) and Eq. (28). We note here that there are multiple covariance matrix, because of multiple dataset.    

 

𝑐𝑜𝑣[𝑌𝑙𝑓(𝑋𝑙𝑓), 𝑌𝑙𝑓(𝑋𝑙𝑓) ] = 𝑐𝑜𝑣[𝑍𝑙𝑓(𝑋𝑙𝑓), 𝑍𝑙𝑓(𝑋𝑙𝑓) ] (26) 
 𝜎𝑙𝑓

2𝛹𝑙𝑓(𝑋𝑙𝑓 , 𝑋𝑙𝑓) 

 

𝑐𝑜𝑣[𝑌ℎ𝑓(𝑋ℎ𝑓), 𝑌𝑙𝑓(𝑋𝑙𝑓) ] = 𝑐𝑜𝑣[𝜌𝑍𝑙𝑓(𝑋ℎ𝑓) + 𝑍𝑑(𝑋ℎ𝑓), 𝑍𝑙𝑓(𝑋𝑙𝑓) ] (27) 
 𝜌𝜎𝑙𝑓

2𝛹𝑙𝑓(𝑋ℎ𝑓 , 𝑋𝑙𝑓) 

 

𝑐𝑜𝑣[𝑌ℎ𝑓(𝑋ℎ𝑓), 𝑌ℎ𝑓(𝑋ℎ𝑓) ] = 𝑐𝑜𝑣[𝜌𝑍𝑙𝑓(𝑋ℎ𝑓) + 𝑍𝑑(𝑋ℎ𝑓), 𝜌𝑍𝑙𝑓(𝑋ℎ𝑓) + 𝑍𝑑(𝑋ℎ𝑓) ] 

(28)  𝜌2𝑐𝑜𝑣[𝑍𝑙𝑓(𝑋ℎ𝑓), 𝑍𝑙𝑓(𝑋ℎ𝑓) ] + 𝑐𝑜𝑣[𝑍𝑑(𝑋ℎ𝑓), 𝑍𝑑(𝑋ℎ𝑓) ] 

 𝜌2𝜎𝑙𝑓
2𝛹𝑙𝑓(𝑋ℎ𝑓 , 𝑋ℎ𝑓) + 𝜎𝑑

2𝛹𝑑(𝑋ℎ𝑓 , 𝑋ℎ𝑓) 

 

Complete covariance matrix is therefore 

 

𝐶 = [
𝑐𝑜𝑣[𝑌𝑙𝑓(𝑋𝑙𝑓), 𝑌𝑙𝑓(𝑋𝑙𝑓) ] 𝑐𝑜𝑣[𝑌𝑙𝑓(𝑋𝑙𝑓), 𝑌ℎ𝑓(𝑋ℎ𝑓) ]

𝑐𝑜𝑣[𝑌ℎ𝑓(𝑋ℎ𝑓), 𝑌𝑙𝑓(𝑋𝑙𝑓) ] 𝑐𝑜𝑣[𝑌ℎ𝑓(𝑋ℎ𝑓), 𝑌ℎ𝑓(𝑋ℎ𝑓) ]
] (29.1) 

or equivalently, 

𝐶 = [
𝜎𝑙𝑓

2𝛹𝑙𝑓(𝑋𝑙𝑓 , 𝑋𝑙𝑓) 𝜌𝜎𝑙𝑓
2𝛹𝑙𝑓(𝑋𝑙𝑓 , 𝑋ℎ𝑓)

𝜌𝜎𝑙𝑓
2𝛹𝑙𝑓(𝑋ℎ𝑓 , 𝑋𝑙𝑓) 𝜌2𝜎𝑙𝑓

2𝛹𝑙𝑓(𝑋ℎ𝑓 , 𝑋ℎ𝑓) + 𝜎𝑑
2𝛹𝑑(𝑋ℎ𝑓 , 𝑋ℎ𝑓)

] (29.2) 

 

 Correlations are the same as in Eq. (4) and there are two correlations,  𝜓𝑙𝑓 and 𝜓𝑑, as seen in Eq. (29.2). Therefore, 

we have more parameters to estimate than there are in Kriging method. To be explicit, these parameters are 

𝜃𝑙𝑓 , 𝜃𝑑, 𝑝𝑙𝑓 , 𝑝𝑑 and scaling factor 𝜌. 

  

 Low-fidelity and high-fidelity data are independent of each other. Therefore, optimal values for 𝜃𝑙𝑓 , 𝑝𝑙𝑓 , 𝜇𝑙𝑓 and 

𝜎𝑙𝑓
2 can be found by using the maximum likelihood estimation formulation of low-fidelity data. Taking the natural 

logarithm, we obtain, without considering the constant terms,  

 

ln(𝐿𝑙𝑓) = −
𝑛𝑙𝑓

2
ln(𝜎𝑙𝑓

2) −
1

2
ln|𝛹𝑙𝑓(𝑋𝑙𝑓 , 𝑋𝑙𝑓)| −

(𝑦𝑙𝑓 − 1𝜇𝑙𝑓)
𝑇𝛹𝑙𝑓(𝑋𝑙𝑓 , 𝑋𝑙𝑓)

−1(𝑦𝑙𝑓 − 1𝜇𝑙𝑓)

2𝜎𝑙𝑓
2

 (30) 
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By setting the derivatives of Eq. (30) with respect to 𝜇𝑙𝑓 and 𝜎𝑙𝑓
2 to zero and solving, Eq. (31) and Eq. (32) are 

obtained: 

 

𝜇̂𝑙𝑓 =
1𝑇𝛹𝑙𝑓(𝑋𝑙𝑓 , 𝑋𝑙𝑓)

−1𝑦𝑙𝑓

1𝑇𝛹𝑙𝑓(𝑋𝑙𝑓 , 𝑋𝑙𝑓)
−11

 (31) 

 

𝜎̂𝑙𝑓
2 =

(𝑦𝑙𝑓 − 1𝜇̂𝑙𝑓)
𝑇𝛹𝑙𝑓(𝑋𝑙𝑓 , 𝑋𝑙𝑓)

−1(𝑦𝑙𝑓 − 1𝜇̂𝑙𝑓)

𝑛𝑙𝑓

 (32) 

 

 Substituting Eq. (31) and Eq. (32) into Eq. (30) yields the concentrated log-likelihood: 

 

ln(𝐿𝑙𝑓) = −
𝑛𝑙𝑓

2
ln(𝜎̂𝑙𝑓

2) −
1

2
ln|𝛹𝑙𝑓(𝑋𝑙𝑓 , 𝑋𝑙𝑓)| (33) 

 

As seen that there are two unknown variables in Eq. (33). These unknown variables are 𝜃̂𝑙𝑓 and 𝑝̂𝑙𝑓 (if not being set 

to 2) inside correlation matrix 𝛹𝑙𝑓. In order to find this unknown variable, one of global optimization method, such as 

the genetic algorithm may again be used. 

 

Having found out the estimations 𝜃̂𝑙𝑓 and 𝑝̂𝑙𝑓, in order to find the rest of the unknown parameters, 𝜃𝑑 , 𝑝𝑑 , 𝜇𝑑 and 

𝜎𝑑
2and 𝜌, we first define  

 

𝑑 = 𝑦ℎ𝑓 − 𝜌𝑦𝑙𝑓(𝑋ℎ𝑓) (34) 

 

where, 𝑦𝑙𝑓(𝑋ℎ𝑓) are values of 𝑦𝑙𝑓 at the locations of high-fidelity data samples 𝑋ℎ𝑓. We consider just high-fidelity 

data sample with respect to auto-regressive model, even if there are low-fidelity samples in the same locations. If there 

are no low-fidelity data samples at same location with high-fidelity samples We should estimate 𝑦𝑙𝑓 at location of 

high-fidelity data samples 𝑋ℎ𝑓. In order to estimate 𝜌, Kriging prediction can be applied using the already determined 

hyper-parameters 𝜃̂𝑙𝑓 and 𝑝̂𝑙𝑓 . After estimating 𝜌 for each high-fidelity data, 𝑑 can be calculated for each of these 

high-fidelity data points. 

 

 Note that the log-likelihood of the high-fidelity data can be written as  

 

ln(𝐿𝑑) = −
𝑛ℎ𝑓

2
ln(𝜎𝑑

2) −
1

2
ln|𝛹𝑑(𝑋ℎ𝑓 , 𝑋ℎ𝑓)| −

(𝑑 − 1𝜇𝑑)𝑇𝛹𝑑(𝑋ℎ𝑓 , 𝑋ℎ𝑓)
−1(𝑑 − 1𝜇𝑑)

2𝜎𝑑
2

 (35) 

 

and, by setting the derivatives of Eq. (35) with respect to 𝜇𝑑 and 𝜎𝑑
2 to zero, we obtain 

 

𝜇̂𝑑 =
1𝑇𝛹𝑑(𝑋ℎ𝑓 , 𝑋ℎ𝑓)

−1𝑑

1𝑇𝛹𝑑(𝑋ℎ𝑓 , 𝑋ℎ𝑓)
−11

 (36) 

 

𝜎̂𝑑
2 =

(𝑑 − 1𝜇̂𝑑)𝑇𝛹𝑑(𝑋ℎ𝑓 , 𝑋ℎ𝑓)
−1(𝑑 − 1𝜇̂𝑑)

𝑛ℎ𝑓

 (37) 

 

Then, substituting Eq. (36) and Eq. (37) into Eq. (35) yields the concentrated log-likelihood 

 

ln(𝐿𝑑) = −
𝑛ℎ𝑓

2
ln(𝜎̂𝑑

2) −
1

2
ln|𝛹𝑑(𝑋ℎ𝑓 , 𝑋ℎ𝑓)| (38) 

 

As seen that there are two unknown variables, again, in Eq. (38). These are 𝜃̂𝑑 and 𝑝̂𝑑 (if not being set to 2) inside 

correlation matrix 𝛹𝑑 and 𝑝̂. Hence, once again, we use GA with log-likelihood cost function to estimate the optimal 

parameter values. 

 

Next, we use this co-Kriging methodology in predictions. 
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B. Co-Kriging Prediction 

 After estimation of all hyper-parameters, the co-Kriging prediction step is derived as in [3]. Like Kriging 

prediction, co-Kriging prediction process follows the same methodology. The main idea is that prediction of a new 

high-fidelity sample point should be correlative with observed data and the parameters, which are found by using 

maximum likelihood estimation. Like Kriging, we augment the objective data with a predicted value to obtain the 

maximum likelihood estimation of the new high-fidelity point 𝑦̂ℎ𝑓(𝑥). To do so, we maximize the likelihood of the 

augmented dataset by varying prediction while keeping the hyper-parameters fixed.    

  

 Augmented dataset is defined as 𝑋̃ = {𝑋𝑙𝑓
𝑇 𝑋ℎ𝑓

𝑇 𝑥}
𝑇
 and 𝑦̃ = {𝑌𝑙𝑓

𝑇𝑌ℎ𝑓
𝑇 𝑦̂ℎ𝑓(𝑥)}

𝑇
. Augmented covariance matrix is 

given by 

 

𝐶̃ = [
𝐶 𝑐

𝑐𝑇 𝜌2𝜎̂𝑙𝑓
2 + 𝜎̂𝑑

2] (39) 

 

Furthermore, when we define the column vector of the covariance of  𝑋 and 𝑥 by 

 

𝑐 = [
𝜌𝜎𝑙𝑓

2𝜓𝑙𝑓(𝑋𝑙𝑓 , 𝑥)

(𝜌2𝜎̂𝑙𝑓
2 + 𝜎̂𝑑

2)𝜓𝑑(𝑋ℎ𝑓 , 𝑥)
] (40) 

 

the augmented covariance matrix turns to be  

 

𝐶̃ = [

𝜎𝑙𝑓
2𝛹𝑙𝑓(𝑋𝑙𝑓 , 𝑋𝑙𝑓) 𝜌𝜎𝑙𝑓

2𝛹𝑙𝑓(𝑋𝑙𝑓 , 𝑋ℎ𝑓)

𝜌𝜎𝑙𝑓
2𝛹𝑙𝑓(𝑋ℎ𝑓 , 𝑋𝑙𝑓) 𝜌2𝜎𝑙𝑓

2𝛹𝑙𝑓(𝑋ℎ𝑓 , 𝑋ℎ𝑓) + 𝜎𝑑
2𝛹𝑑(𝑋ℎ𝑓 , 𝑋ℎ𝑓)

𝜌𝜎𝑙𝑓
2𝜓𝑙𝑓(𝑋𝑙𝑓 , 𝑥) (𝜌2𝜎̂𝑙𝑓

2 + 𝜎̂𝑑
2)𝜓𝑑(𝑋ℎ𝑓 , 𝑥)

𝜌𝜎𝑙𝑓
2𝜓𝑙𝑓(𝑋𝑙𝑓 , 𝑥)

(𝜌2𝜎̂𝑙𝑓
2 + 𝜎̂𝑑

2)𝜓𝑑(𝑋ℎ𝑓 , 𝑥)

𝜌2𝜎̂𝑙𝑓
2 + 𝜎̂𝑑

2

] (41) 

 

 As shown in Eq. (30) and Eq. (35), ,it is seen that only the last term of the log-likelihood contains the sample data 

𝑦̃, and hence to find the maximum likelihood estimations 𝑦̂ℎ𝑓(𝑥) we need to maximize last term of log-likelihood 

equation given by, 

 

ln(𝐿) = −
1

2
(𝑦̃ − 1𝜇)𝑇𝐶̃−1(𝑦̃ − 1𝜇) (42) 

 

which may further be written in detail as follows: 

 

ln(𝐿) ≈ −
1

2
(

𝑦 − 1𝜇̂
𝑦̂ℎ𝑓(𝑥) − 𝜇̂

)
𝑇

(
𝐶 𝑐

𝑐𝑇 𝜌2𝜎̂𝑙𝑓
2 + 𝜎̂𝑑

2)
−1

(
𝑦 − 1𝜇̂

𝑦̂ℎ𝑓(𝑥) − 𝜇̂
) (43) 

 

 Inverse of augmented covariance matrix can also be found using partitioned inverse formula described in appendix. 

Thus, substituting the inverse 

 

𝐶̃−1 = [
𝐶−1 + 𝐶−1𝑐(𝜌2𝜎̂𝑙𝑓

2 + 𝜎̂𝑑
2 − 𝑐𝑇𝐶−1𝑐)−1𝑐𝑇𝐶−1 −𝐶−1𝑐(𝜌2𝜎̂𝑙𝑓

2 + 𝜎̂𝑑
2 − 𝑐𝑇𝐶−1𝑐)−1

−(𝜌2𝜎̂𝑙𝑓
2 + 𝜎̂𝑑

2 − 𝑐𝑇𝐶−1𝑐)−1𝑐𝑇𝐶−1 (𝜌2𝜎̂𝑙𝑓
2 + 𝜎̂𝑑

2 − 𝑐𝑇𝐶−1𝑐)−1
] (44) 

 

into Eq. (43) and ignoring the constant terms, we simplify the objective to 

 

ln(𝐿) ≈ (
−1

2(𝜌2𝜎̂𝑙𝑓
2 + 𝜎̂𝑑

2 − 𝑐𝑇𝐶−1𝑐)
) (𝑦̂ℎ𝑓(𝑥) − 𝜇̂)

2
+ (

𝑐𝑇𝐶−1(𝑦 − 1𝜇̂)

𝜌2𝜎̂𝑙𝑓
2 + 𝜎̂𝑑

2 − 𝑐𝑇𝐶−1𝑐
) (𝑦̂ℎ𝑓(𝑥) − 𝜇̂) (45) 

 

to be maximized. Again, by taking the derivative with respect to 𝑦̂ℎ𝑓(𝑥) and setting the result to zero, we obtain 

 

(
−1

𝜌2𝜎̂𝑙𝑓
2 + 𝜎̂𝑑

2 − 𝑐𝑇𝐶−1𝑐
) (𝑦̂ℎ𝑓(𝑥) − 𝜇̂) + (

𝑐𝑇𝐶−1(𝑦 − 1𝜇̂)

𝜌2𝜎̂𝑙𝑓
2 + 𝜎̂𝑑

2 − 𝑐𝑇𝐶−1𝑐
) = 0 (46) 
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so that the optimal solution 

 

𝑦̂ℎ𝑓(𝑥) = 𝜇̂ + 𝑐𝑇𝐶−1(𝑦 − 1𝜇̂) (47) 

𝜇̂ =
1𝑇𝐶−1𝑦

1𝑇𝐶1
, 𝑦 = (𝑦𝑙𝑓 , 𝑦ℎ𝑓) (47) 

 

is achieved. 

 

V. Comparison of Kriging and Co-Kriging Method Results 

 In this section, the results obtained from the modified VCM and co-Kriging methods are compared. Results are 

plotted in form 𝐶𝐿, 𝐶𝐷, 𝐶𝑚 vs 𝛼 (angle of attack) for various horizontal tail deflections at Mach 0.2. In order to measure 

the success of the predictions, root mean square error (RMSE) of predicted and observed data values  is implemented. 

Therefore, we need a test dataset to use RMSE criteria: high-fidelity data are used for this purpose, since we accept 

high-fidelity data as correct and low-fidelity data contain all possible error terms. Firstly, high-fidelity dataset is 

separated as train and test dataset. Then, train dataset is used for building co-Kriging model and Modified VCM model. 

In order to calculate RMSE for each approach, high-fidelity test dataset is used. RMSE formulation is therefore given 

by 

 

𝑅𝑀𝑆𝐸 = √
(𝑦𝑝𝑟𝑒𝑑−𝑦𝑜𝑏𝑠)

2

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎
 (48) 

 

 To lower the cost of data generation, the total number of test cases to construct high fidelity dataset should be 

decreased. Design of Experiment methods were developed to maximize the amount of information from a limited 

number of samples. The another issue is to select the number of ratio between high fidelity and low fidelity datasets. 

Total number of high and low fidelity dataset is in order 341 and 774. The RMSE value for ratio of high fidelity and 

low fidelity datasets from 10% to 90% is observed for each approach. 60% of ratio yields the most reasonable results 

as shown in Figure 9. 

 

 
Figure 9. Comparison of data fusion methods with respect to mean square error values. 
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 For the rest of study, we continue with 60% of high fidelity dataset with respect to low fidelity dataset. 

 

Below, 𝐶𝐿, 𝐶𝐷, 𝐶𝑚 vs 𝛼 plots of various horizontal tail deflection conditions at Mach 0.2 are shown for the two data 

fusion methods; their performances are compared in terms of RMSE and illustrated in figures.  

 

𝐶𝐿 vs 𝛼 plot for Mach 0.2  and −20,−10, 0 , 10, 20 horizontal tail deflections are given from Figure 10 to Figure 14,  

𝐶𝐿 vs 𝛼 plot for Mach 0.2 and −20, 0, 20  horizontal tail deflections are given in same plot in Figure 15, 

𝐶𝐷 vs 𝛼 plot for Mach 0.2  and −20,−10, 0 , 10, 20 horizontal tail deflections are given from Figure 16 to Figure 19,  

𝐶𝐷 vs 𝛼 plot for Mach 0.2 and −20, 0, 20  horizontal tail deflections are given in same plot in Figure 20, 

𝐶𝑚 vs 𝛼 plot for Mach 0.2  and −20,−10, 0 , 10, 20 horizontal tail deflections are given from Figure 21 to Figure 25, 

𝐶𝑚 vs 𝛼 plot for Mach 0.2 and −20, 0, 20  horizontal tail deflections are given in same plot in Figure 26. 

 

 
Figure 10. Comparison of Modified VCM and co-Kriging prediction for 𝐶𝐿 vs 𝛼.  
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Figure 11. Comparison of Modified VCM and co-Kriging prediction for 𝐶𝐿 vs 𝛼. 
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Figure 12. Comparison of Modified VCM and co-Kriging prediction for 𝐶𝐿 vs 𝛼. 

 

 
Figure 13. Comparison of Modified VCM and co-Kriging prediction for 𝐶𝐿 vs 𝛼. 
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Figure 14. Comparison of Modified VCM and co-Kriging prediction for 𝐶𝐿 vs 𝛼. 

 

 
Figure 15. Comparison of Modified VCM and co-Kriging prediction for 𝐶𝐿 vs 𝛼. 
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Figure 16. Comparison of Modified VCM and co-Kriging prediction for 𝐶𝐷 vs 𝛼.  

 

 
Figure 17. Comparison of Modified VCM and co-Kriging prediction for 𝐶𝐷 vs 𝛼. 
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Figure 17. Comparison of Modified VCM and co-Kriging prediction for 𝐶𝐷 vs 𝛼. 

 

 
Figure 18. Comparison of Modified VCM and co-Kriging prediction for 𝐶𝐷 vs 𝛼. 
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Figure 19. Comparison of Modified VCM and co-Kriging prediction for 𝐶𝐷 vs 𝛼. 

 

 
Figure 20. Comparison of Modified VCM and co-Kriging prediction for 𝐶𝐷 vs 𝛼. 
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Figure 21. Comparison of Modified VCM and co-Kriging prediction for 𝐶𝑚 vs 𝛼.  

 

 
Figure 22. Comparison of Modified VCM and co-Kriging prediction for 𝐶𝑚 vs 𝛼. 
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Figure 23. Comparison of Modified VCM and co-Kriging prediction for 𝐶𝑚 vs 𝛼. 

 

 
Figure 24. Comparison of Modified VCM and co-Kriging prediction for 𝐶𝑚 vs 𝛼. 
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Figure 25. Comparison of Modified VCM and co-Kriging prediction for 𝐶𝑚 vs 𝛼. 

 

 
Figure 26. Comparison of Modified VCM and co-Kriging prediction for 𝐶𝑚 vs 𝛼. 

 

 In Figures 10-26, comparison of the modified VCM and co-Kriging approach predictions are given. As seen from 

these figures, co-Kriging method provides more accurate than the modified VCM. To be specific, the RMSEs of both 

approaches for high fidelity data points are plotted at Figure 9. We should remark again that 60% of high fidelity gives 

reasonable results for both methods as seen in Figure 9.   

 

 In the modified VCM approach, the low-fidelity data provides the overall shape of the function whereas the high-

fidelity data adjusts the data [15]. On the other hand, co-Kriging approach tries to correlate both set of data. The 

modified VCM approach uses Kriging model for prediction. Therefore, this approach passes exactly from high-fidelity 

data. However, if there are no high-fidelity data, the modified VCM shows an oscillatory trend. Conversely, co-

Kriging approach uses correlation of high and low dataset. Thus, this approach becomes more robust and does not 

show an oscillatory behavior. 

VI. Conclusion and Future Work 

A simple F16 fighter aircraft geometry is obtained from the publicly open resources and its geometric details are 

corrected. Datcom input file is created and subsonic aerodynamic database of F16 is generated for the baseline and 

deflected horizontal tail configurations. This database is assigned as low-fidelity dataset. Subsonic wind tunnel data 

of F16 is obtained as the high-fidelity data. The differences in low and high-fidelity datasets are clarified. Similar 

trends are observed for lift and drag coefficients although there exist reasonably variable shifts between these datasets. 

However, the trends in pitch moment are not compatible with lift and drag coefficients in similarity of low- and high-

fidelity data.  

 

Co-kriging and the modified VCM approaches are used to derive high-fidelity datasets using low-fidelity datasets. 

The results obtained for the lift, drag and pitch moment coefficient are compared for various horizontal tail deflections. 

co-Kriging approach provides more accurate results than the modified VCM due to the lower rate of oscillations in 

the results. That is, the modified VCM tends to follow low fidelity data behavior, if there are no data samples around. 
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In fact, the RMSE values verify such a conclusion as well. Overall RMSE value of the modified VCM is approximately 

twice of co-Kriging approach, when number of high fidelity data is small as seen in Figure 9.  

 

Additionally, both approaches are prone to diverge after the lower and upper bounds of fit. In other words, these 

approaches could not be used effective for extrapolations purposes. Therefore, for design purpose, high fidelity dataset 

should include upper and lower bounds. 
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Appendix 

A. Partitioned Inverse of Matrix 

 For a nonsingular 𝑛 × 𝑛 matrix, 𝐴 there is a unique 𝑛 × 𝑛 inverse matrix 𝐴−1, which satisfies 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼 

(𝐼 is an identity matrix). Therefore, given the nonsingular matrix  

 

𝐴 = (
𝑃1 𝑅1

𝑅1
𝑇 𝑄1

) (A1) 

 

where 𝑃1 and 𝑄1 are nonsingular (block) submatrices, we wish to solve 

 

𝐴−1𝐴 = 𝐼 = (
𝑃2 𝑅2

𝑅2
𝑇 𝑄2

) (
𝑃1 𝑅1

𝑅1
𝑇 𝑄1

) = (
𝐼 0
0 𝐼

) (A1.1) 

 

This splits into the four submatrix equations: 

 

𝑃2𝑃1 + 𝑅2𝑅1
𝑇 = 𝐼 (A1.2) 

 

𝑃2𝑅1 + 𝑅2𝑄1 = 0 (A1.3) 

 

𝑅2
𝑇𝑃1 + 𝑄2𝑅1

𝑇 = 0 (A1.4) 

 

𝑅2
𝑇𝑅1 + 𝑄2𝑄1 = 𝐼 (A1.5) 

 

Hence, from Eq. (A1.4), we obtain 𝑅2
𝑇 = −𝑄2𝑅1

𝑇𝑃1
−1, which is then substituted into Eq. (A1.5) to 

give 𝑄2(𝑄1 − 𝑅1
𝑇𝑃1

−1𝑅1) = 𝐼, so 

 

𝑄2 = (𝑄1 − 𝑅1
𝑇𝑃1

−1𝑅1)
−1

 (A1.6) 

 

and, therefore,  

 

 𝑅2
𝑇 = −(𝑄1 − 𝑅1

𝑇𝑃1
−1𝑅1)

−1
𝑅1

𝑇𝑃1
−1 (A1.7) 

 

 𝑅2 = −𝑃1
−1𝑅1(𝑄1 − 𝑅1

𝑇𝑃1
−1𝑅1)

−1
 (A1.8) 

 

By substituting Eq. (A1.8) into Eq. (A1.2), clearly one gets  𝑃2𝑃1 − 𝑃1
−1𝑅1(𝑄1 − 𝑅1

𝑇𝑃1
−1𝑅1)

−1
𝑅1

𝑇 = 𝐼 and hence, 

 

𝑃2 = 𝑃1
−1 + 𝑃1

−1𝑅1(𝑄1 − 𝑅1
𝑇𝑃1

−1𝑅1)
−1

𝑅1
𝑇𝑃1

−1 (A1.9) 

 

Finally, by using Eq. (A1.6), (A1.7), (A1.8), and (A1.9) all in one to form 𝐴−1 we get 

 

𝐴−1 = (
𝑃1

−1 + 𝑃1
−1𝑅1(𝑄1 − 𝑅1

𝑇𝑃1
−1𝑅1)

−1
𝑅1

𝑇𝑃1
−1 −𝑃1

−1𝑅1(𝑄1 − 𝑅1
𝑇𝑃1

−1𝑅1)
−1

−(𝑄1 − 𝑅1
𝑇𝑃1

−1𝑅1)
−1

𝑅1
𝑇𝑃1

−1 (𝑄1 − 𝑅1
𝑇𝑃1

−1𝑅1)
−1 ) (A1.10) 

 

 

 


