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This paper introduces the Adaptive Spherical Expansion and Sequential Convex 

Programming (ASE-SCP) as a real-time motion planning algorithm. ASE-SCP algorithm is 

an improved version of the Spherical Expansion and Sequential Convex Programming (SE-

SCP) algorithm in terms of computational speed. ASE-SCP is a hybrid real-time motion 

planning algorithm which combines the advantages of the Adaptive Spherical Expansion, such 

as approaching the neighborhood of the global optimal path, and the quick convergence ability 

of the Sequential Convex Programming. The ASE-SCP algorithm first finds a collision-free 

path using the adaptive spherical expansion approach. After finding a feasible path from the 

start point to the target point, the feasible path is re-optimized (tuned) using sequential convex 

optimization to find the suboptimal path. ASE-SCP Algorithm is applied to a quadcopter 

model to demonstrate its applicability.  

Nomenclature 

RMS  = Root Mean Square 

EOM  = Equation of Motion 

ZMQ  = ZeroMQ 

PRM  =  Probabilistic Road Maps 

FMT  =  Fast Marching Trees 

RRT  =  Exploring Random Trees 

SCP =  Sequential Convex Programming 

SE-SCP =  Spherical Expansion Sequential Convex Programming 

ASE-SCP =  Adaptive Spherical Expansion Sequential Convex Programming 

CVX  =  Convex Optimization Solver 

 

I.Introduction 

Motion planning plays an important role in improving the autonomous flight capability of unmanned aerial 

vehicles (UAVs) over the last decade [1]. One such UAV is the quadcopter, which is used for many military and 

civilian applications [2] [3] [4] and may fly in a complex environment with a significant number of obstacles. These 
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obstacles may be fixed or may move over time. To successfully complete a mission, an autonomous quadcopter 

requires appropriate algorithms for motion planning. These missions can be formation, aggregation, or cluster [5].  

There are many algorithms, such as sampling-based and search algorithms, that have been proposed and applied 

to quadcopter path planning [1]. However, these algorithms are not efficient for multi-perspectives. The sampling-

based algorithms are widely used in practice [6] [7]. Some of these algorithms are Rapid Exploring Random Trees 

(RRT), Fast Marching Trees (FMT) and Probabilistic Road Maps (PRM) [6]. These algorithms generally focus only 

on distance and try to minimize it. In other words, the algorithm tries to increase the number of samples to decrease 

the distance of the path, but computational efficiency will decrease substantially with the increasing sample number.  

In SE-SCP, the elapsed time is much shorter compared to other motion planning algorithms. In this hybrid algorithm, 

first Spherical Expansion (SE) is used to generate a feasible path while avoiding collisions with obstacles. Then 

Sequential Convex Programming (SCP) is used to optimize the existing path obtained by SE. It means the SE is used 

to generate a first guess for the SCP initialization. However, when the radius of the sphere is smaller than the 

predefined value, the SE-SCP algorithm tends to get stuck around the objects. To prevent this phenomenon, the radius 

of the sphere is adaptively changed, which is the contribution of this study. 

In this paper, a new algorithm called Adaptive Spherical Expansion and Sequential Convex Optimization (ASE-

SCP) (a modified version of SE-SCP) is proposed. The modified algorithm is faster and more stable than the original 

SE-SCP. 

In the study, a mathematical model of a quadcopter was used [7]. The rest of the paper is organized as follows: 

Section III models the problem of path planning. In Section IV, the ASE-SCP algorithm is introduced. Section V 

presents the quadcopter model, simulation environment and real-time communication method. In Section V, the results 

are analyzed. Finally, Section VII draws the conclusion of this paper and mention the future work. 

II. Problem statement  

 

In this paper, the mission of target tracking and obstacle avoidance are considered simultaneously for the dynamic 

path planning problem, which can be regarded as the real-time optimization problem under constraints. In this section, 

optimization problem is defined. Let Χ ∈ ℝ𝑛 represents the workspace, while Χ𝑜𝑏𝑠 ⊂ Χ represent the obstacles in the 

workspace, and Χ𝑢𝑛𝑠𝑎𝑓𝑒 ⊂ Χ represents the unsafe region around an obstacle. This region is decided by the user 

considering quadcopter dynamics and safety factor in real-time application. Therefore, the region where the 

quadcopter move safely is Χ𝑠𝑎𝑓𝑒 = Χ/(Χ𝑜𝑏𝑠 ∪ Χ𝑢𝑛𝑠𝑎𝑓𝑒). 

The optimization problem is constrained by the quadcopter dynamics which is given in Appendix A. Quadcopter 

nonlinear model is given in Eq. (1); 

𝑥̇ = 𝑓(𝑥, 𝑢) (1) 

where 𝑓 is a nonlinear function, 𝑥 is the state vector of the quadcopter, 𝑢 ∈ 𝑈 is the control inputs and 𝑈 is the feasible 

range of control inputs. Feasible range means available control power physically. We cannot provide control power 

more than available power. It is also one of the optimization problem constraints. 

 The 𝜎(𝑡) ∈ Χ𝑠𝑎𝑓𝑒  represents a feasible trajectory for the quadcopter and 𝒥(𝜎(𝑡)) represents the cost of this 

feasible trajectory. The cost function can be defined in several ways depending on the purpose of the quadcopter 

operation. For example, the cost function can be defined for minimum battery energy consumption, or minimum 

trajectory distance or a combination of both [6]. In this study cost function is defined to minimize control inputs and 

trajectory distance. Let Χ𝑖𝑛𝑖𝑡 ∈ Χ𝑠𝑎𝑓𝑒  and Χ𝑡𝑎𝑟𝑔𝑒𝑡 ∈ Χ𝑠𝑎𝑓𝑒  represent initial and desired positions of the quadcopter in 

the workspace, respectively. These are also optimization constraints; the quadcopter trajectory should start from Χ𝑖𝑛𝑖𝑡  

and stop at Χ𝑡𝑎𝑟𝑔𝑒𝑡. 

After definition of optimization problem and its constraints, the optimization problem can be written in Eq. (2); 

𝑚𝑖𝑛𝜎(𝑡),𝑢(𝑡)  𝒥(𝜎(𝑡)) 

(2) 

Subject to 𝜎(𝑡0) = Χ𝑖𝑛𝑖𝑡  

 𝜎(𝑡𝑓) = Χ𝑡𝑎𝑟𝑔𝑒𝑡  

 𝜎̇(𝑡) = 𝑓(𝜎(𝑡), 𝑢(𝑡)), ∀𝑡 ∈ [𝑡0, 𝑡𝑓] 

 𝜎(𝑡) ∈ Χ𝑠𝑎𝑓𝑒 , ∀𝑡 ∈ [𝑡0, 𝑡𝑓] 

 𝑢(𝑡) ∈ 𝑈, ∀𝑡 ∈ [𝑡0, 𝑡𝑓] 
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The globally optimal solution of equation (2) is the best trajectory for the given cost function given the constraints. 

However, the given optimization problem is complex, and it is difficult to find a globally optimal solution. This is 

because the given problem is a non-linear, non-convex optimization problem. The given optimization problem can be 

solved using global optimization methods such as genetic algorithm, particle swarm optimization, etc., but this may 

take too much time and is hence not suitable for real-time applications. Therefore, convex optimization methods 

should be used to find an optimal solution to the given optimization problem. Convex optimization methods provide 

an optimal solution for real-time problems. To use convex optimization methods, the given problem must be 

transformed into a convex problem. This procedure is called convexification [8] or convex relaxation [9]. 

Firstly, the continuous optimization problem is discretized. Continuous time [𝑡0, 𝑡𝑓] is represented as discrete time 

steps [0, 1, 2, … , 𝑇]. Optimal trajectory from Χ𝑖𝑛𝑖𝑡  to Χ𝑡𝑎𝑟𝑔𝑒𝑡  that passes through spheres corresponding to the 

points [Χ0 , Χ1, Χ2, … , Χ𝑇−1]. Therefore, 𝜎(0) = Χ𝑖𝑛𝑖𝑡  and 𝜎(𝑇) = Χ𝑡𝑎𝑟𝑔𝑒𝑡. 

To obtain convex form of optimization problem, norm of the convex functions is used. Therefore, first part of the 

cost function can be written as a sum of the norms of given inputs for each time step. The other part of the cost function 

can be written using sum of square of trajectory to make cost function convex. Now cost function of optimization 

problem is in convex form. 

In the case of trajectory should be in safe workspace, these constraints can also be expressed using norm function. 

The norm of the difference of trajectory points and the sphere center for each sphere should be lower or equal to the 

radius of each sphere. 

Also, available input constraint can be written using norm function. The norm of the inputs should be lower than 

maximum available inputs for each time step. 

Finally, the nonlinear model of quadcopter should be linearized for convex form of optimization problem. One 

major work in convexification of complex problem lies on how to convexify the nonlinear dynamics. Linearization of 

nonlinear dynamics is one convexification method. Nonlinear terms are repeatedly linearized at a known solution 

obtained in the previous iteration [10]. Detailed information about quadcopter linear model can be found in Appendix 

B. 

Mathematical expressions of all constraints and cost function in given Eq. (3). Now our optimization problem is 

convex. Therefore, we can solve it using convex optimization solver, namely CVX [11]. 

𝑚𝑖𝑛𝜎(𝑡),𝑢(𝑡)  ∑‖𝑢(𝑘)‖2

𝑇−1

𝑘=0

+ 𝑎𝑏𝑠(𝜎(𝑡) − 𝜎(𝑡 + 1)) 
 

(3) 
Subject to 𝜎(0) = Χ𝑖𝑛𝑖𝑡   

 𝜎(𝑇) = Χ𝑡𝑎𝑟𝑔𝑒𝑡   

 𝜎(𝑘 + 1) = 𝐴(𝑘)𝜎(𝑘) + 𝐵(𝑘)𝑢(𝑘) ∀𝑘 ∈ 0,… , 𝑇 − 1 

 ‖𝜎(𝑘) − Χ𝑘‖2 ≤ 𝑟𝑘 ∀𝑘 ∈ 0,… , 𝑇 

 ‖𝑢(𝑘)‖2 ≤ 𝑈𝑚𝑎𝑥 ∀𝑘 ∈ 0,… , 𝑇 

III. Adaptive Search with Spherical Expansion and Sequential Convex Optimization 

In this section, the Adaptive Spherical Expansion algorithm is presented. First, some terms are defined. Let V be 

the set of vertices. Besides the position of the vertex, V also stores the minimum distance of the vertex to the obstacles. 

Let 𝐸 be the set of edges, where each element store the start and end point of the edge, the current trajectory and the 

cost of the trajectory. Therefore, the graph can be expressed as 𝐺 = (𝑉, 𝐸). 

The entire algorithm can be seen as a flow chart in Figure 1. The algorithm can be divided into three steps: 

Initialization, adaptive search with spherical expansion and sequential convex optimization. A detailed pseudo- 

algorithm can be found in Appendix C. 

A. Initialization Step  

 In the Initialization section, the initial trajectory, 𝑋𝑖𝑛𝑖𝑡 , and the target position, 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 , are defined in this section. 

When initializing a new sphere, the sphere is initialized with the x, y position and r, the radius of the sphere. The 

radius of the sphere expresses the maximum radius of the sphere without intersecting with objects. The search radius, 

𝑟𝑠𝑒𝑎𝑟𝑐ℎ, is also initialised with GenerateRandRadius(). The function 𝑟𝑠𝑒𝑎𝑟𝑐ℎ for the adaptive search is calculated as 

given in Eq. 4, 

 

𝑟𝑠𝑒𝑎𝑟𝑐ℎ = 𝑘𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑅𝑎𝑛𝑔𝑒([0.0,1.0)) (4) 

D
ow

nl
oa

de
d 

by
 T

U
R

K
IS

H
 A

E
R

O
SP

A
C

E
 I

N
D

U
ST

R
IE

S 
on

 J
an

ua
ry

 1
9,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

11
46

 



 

4 

 

 

The GenerateRandomNumberInRange() function given in Eq. 4 generates a random number in the specified range. 

Here the specified range is [0.0,1.0). The value 𝑟𝑠𝑒𝑎𝑟𝑐ℎ is used in the AdaptiveRadiusDecision() function which is 

given in algorithm 1. 

 

Figure 1: Flowchart of ASE-SCP. 
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B. Adaptive Search with Spherical Expansion Step  

 The main objective of this step is to find a feasible and collision-free trajectory starting from the initial position 

Χ𝑖𝑛𝑖𝑡  and leading to the final position Χ𝑡𝑎𝑟𝑔𝑒𝑡  in real time. In this step, the algorithm scans the entire map with an 

adaptive search radius, using some random search techniques. 

 The random sampling method returns Χ𝑟𝑎𝑛𝑑. This random point is drawn from a uniform distribution and can be 

anywhere in the area except objects. After the random point is determined, the closest point to the random point within 

the vertex is searched. The point closest to the Χ𝑒𝑑𝑔𝑒  becomes the Χ𝑛𝑒𝑎𝑟𝑒𝑠𝑡 point. In other words, Χ𝑛𝑒𝑎𝑟𝑒𝑠𝑡 is the vertex 

closest to the Χ𝑒𝑑𝑔𝑒  point. Then Χ𝑛𝑒𝑎𝑟𝑒𝑠𝑡 point is calculated. If Χ𝑒𝑑𝑔𝑒  is within the sphere of Χ𝑛𝑒𝑎𝑟𝑒𝑠𝑡, Χ𝑒𝑑𝑔𝑒 is set to 

the new Χ𝑛𝑒𝑤 point. In the other case, where Χ𝑟𝑎𝑛𝑑  is outside the sphere of Χ𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , the algorithm finds a new point 

on the surface of the sphere of Χ𝑛𝑒𝑎𝑟𝑒𝑠𝑡  and returns this point as Χ𝑛𝑒𝑤. After Χ𝑛𝑒𝑤  is established, the search radius, 

𝑟𝑠𝑒𝑎𝑟𝑐ℎ, is a number created to prevent the algorithm from failing. Without this constraint, the quadcopter is prone to 

stacking up next to obstacles. Also, this constraint makes for a much faster search algorithm. This is because the 

algorithm does not take a small step (small sphere) if it is not necessary. When it is necessary (there is little space 

between two objects), the adaptive search algorithm reduces the search radius to find a feasible path, even if it is small. 

This search radius is initialized by the GenerateRandRadius() function in the initialization step and the search radius 

changes adaptively in the algorithm by the AdaptiveRadiusDecision() function, shown in Algorithm 1. 

 

Algorithm 1: AdaptiveRadiusSearch 

1: if 𝑟𝑛𝑒𝑤 < 𝑟𝑠𝑒𝑎𝑟𝑐ℎ, following 3 consecutive iteration then 

2:  𝑘𝑟𝑎𝑛𝑑𝑜𝑚 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑅𝑎𝑛𝑔𝑒([0.0, 1.0)) 

3:  𝑟𝑠𝑒𝑎𝑟𝑐ℎ = 0.5 + 𝑘𝑟𝑎𝑛𝑑𝑜𝑚 ∗ 𝑟𝑠𝑒𝑎𝑟𝑐ℎ 

4:  continue with the next iteration 

5: end if 

Algorithm 1: Pseudo Algorithm of Adaptive Radius Search.  

 

 The list of neighbor points Χ𝑛𝑒𝑎𝑟  to the Χ𝑛𝑒𝑤 is found. All spheres in the set of Χ𝑛𝑒𝑎𝑟  intersect with the sphere 

Χ𝑛𝑒𝑤. These intersections ensure that there is a collision free path between Χ𝑛𝑒𝑤 and each vertex in Χ𝑛𝑒𝑎𝑟 . Then, the 

Χ𝑛𝑒𝑤 and its radius r𝑛𝑒𝑤  are added to the set of vertices 𝑉. 

 After new point Χ𝑛𝑒𝑤 and its neighbors Χ𝑛𝑒𝑎𝑟  are added to vertices 𝑉, new trajectory is created with new vertex 

Χ𝑛𝑒𝑤 and vertices in set of Χ𝑛𝑒𝑎𝑟. In this way, a set of graphs with the existing vertices is generated. These graphs and 

their costs are contained in set of edges. The trajectories are created with straight lines between the vertices. Therefore, 

the cost of the trajectories is calculated using Euclidian distances. In addition, this method reduces the computation 

time. These processes are repeated multiple time and spherical expansion run for new vertex and multiple edges. The 

vertex is listed in set of vertices and the edges are added to the graph. 

C. A* Path Finding Algorithm 

 In this step, the shortest paths in the graph 𝐺 = (𝑉, 𝐸) from initial position Χ𝑖𝑛𝑖𝑡  to the target position Χ𝑡𝑎𝑟𝑔𝑒𝑡  are 

found using A* path finding algorithm. A* Algorithm try to find the shortest path. In the adaptive search with spherical 

expansion step, many paths are found using spheres. The shortest path is found with A* algorithm among many 

alternative paths. How the A* algorithm works is not the subject of this article. More detailed information can be 

found in [12]. 

D. Sequential Convex Optimization Step 

 Next, using sequential convex programming (SCP), the shortest path which is found by A* is optimized at the cost 

of minimum distance and minimum inputs. 

 If the current shortest path step is lower than the previous one, then the optimal trajectory is found using Sequential 

Convex Programming (SCP). The SCP optimization tries to find the optimal trajectory from Χ𝑖𝑛𝑖𝑡  to Χ𝑡𝑎𝑟𝑔𝑒𝑡, through 

spheres corresponding to the points [Χ0, Χ1 , Χ2, … , Χ𝑇−1] ∈ 𝑃𝑎𝑡ℎ. The SCP optimization function uses the CVX 

package to find the optimal trajectory. CVX package solves the optimization problem in Eq. (3). As mentioned earlier, 

the optimization problem has a convex form so the CVX package finds the optimal trajectory quickly. 
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 The optimal trajectory is within given spheres and optimizes the shortest path for given costs. Then the new optimal 

trajectory is optimized recursively using CVX package. This sequential optimization provides a better optimal 

trajectory.  

 After each step of the ASE-SCP algorithm, there are escape and break conditions; these are to allow the algorithm 

to run in real time. The aim of these condition is to make the algorithm run in real time. If the quadcopter cannot find 

the optimal path or it takes too much time for searching, escape condition terminates the algorithm and skips to the 

next iteration. 

IV. Quadcopter Model, Simulation Environment & Real-Time Communication 

 To analyze the performance of the ASE-SCP algorithm, it is examined in a simulated environment. For this 

purpose, a quadcopter simulation model is developed. First, quadcopter`s equation of motion (EOM), actuators, 

stability and control augmented systems are modelled in MATLAB/Simulink environment. Then, C code of the 

Simulink model is generated because the communication between C code and the proposed algorithm is simpler.  

 The proposed algorithm, ASE-SCP, is developed in Python environment. The main reason for this is that CVXPY 

(a library written in Python) is used to solve the convex optimization problems. 

 To run the simulation in real-time, both the quadcopter flight dynamic model and the ASE-SCP algorithm run 

separately in different threads. Both can communicate with each other. Therefore, neither the ASE-SCP algorithm nor 

quadcopter flight dynamic model need to wait for each other`s output to continue. This means that as soon as a new 

waypoint is available, the quadcopter moves to that point. In addition, the waypoint can be changed if the quadcopter 

does not complete previous one. This enables real-time communication.  

 Both threads use the ZeroMQ (ZMQ) library to communicate with each other. ZMQ is an asynchronous messaging 

library. ZMQ supports all languages such as C, C++, Python, etc. ZMQ provides many messaging patterns like 

Publishing/Subscriber, Request/Reply, Client/Server and others. In our case, Publisher/Subscriber message pattern is 

chosen. Publish/Subscribe is classic pattern where the senders of messages, called publishers, do not program the 

messages to be sent directly to specific receivers, called subscribers. The messages are published without knowing 

whether there are subscribers and if so, which ones. In our communication problem, the ASE-SCP thread publish 

desired waypoints and subscribe quadcopter current point to feed the algorithm as shown in Figure 2. Simulation 

subscribes waypoint and publish the quadcopter current position.  

 

Figure 2: Simulation & ASE-SCP communication interfaces 

V. The Results and Discussion 

 An example case is examined in this section. The start point is taken [10, 10][metres] and the target point is at [95, 

95][metres]. In Figure 3-Figure 5, we can see the performance of the proposed method. In Figure 3 and Figure 4, 

`green square` indicates the current position of quadcopter, `red line`  indicates the feasible path is founded by A* 

algorithm, `blue line` indicates suboptimal path by SCP algorithm, and `black circle` indicate obstacles. 
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 In Figure 3, ASE-SCP algorithm performance can be seen for different object sets for random time shots. As shown 

in the figure, the algorithm can generate collision-free trajectories. As seen in Figure 3 (a) and (b), both simulations 

are very close to the target position, While ASE-SCP finds the shortest path in Figure 3(a), the founded path is not the 

shortest in Figure 3(b). Because ASE-SCP does not guarantee to find the shortest path. A* algorithm tries to find the 

shortest path using the given graph 𝐺 = (𝑉, 𝐸), however we don’t give all graph to A* algorithm. If we wait ASE-

SCP algorithm search all map to obtain all graph, it takes so much time. Therefore, real time path planning is not 

possible anymore. So, this is the trade-off. ASE-SCP algorithm presents an object-free path in real-time, so that 

algorithm gives us any object-free path, when it is available. 

 In Figure 3(c) and (d), simulation is in beginning phase. Red paths are A* paths. As seen, in Figure 3(c) algorithm 

finds the shortest path at the beginning of the simulation, while Figure 3(d) does not find the shortest path in the 

beginning of the simulation. 

 

Figure 3: ASE-SCP Algorithm performance for different object sets. 

  

 In Figure 4, time sequence of one simulation from start to end can be seen. Once the optimization increment is 

finished, the current time 𝑡𝑐 is updated and the process restarts. In this case example, the algorithm found a shorter 

trajectory at each time step except 𝑡4. There is a little difference in the suboptimal paths after second optimization 

increment, 𝑡2. Suboptimal paths converged to shortest path with increasing time. 
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Figure 4: ASE-SCP Algorithm time sequences for selected object set. 

 In Figure 5, the time performance of the presented algorithm can be seen. Each bar indicates elapsed time for A* 

and SCP, respectively. Red-colored parts show the time elapsed for A* and blue-colored parts show the time elapsed 

for SCP. As seen, the SCP method takes roughly 0.30 seconds to complete each time step, with little variation. The 

computation time in the A* algorithm is more than the computation time in the SCP algorithm; particularly in the 

initial time step (more than 1 second). Because there is no prior knowledge of the workspace in the first step so it takes 

time to collect enough vertices, and give a graph to the A* algorithm.  

 

 

Figure 5: ASE-SCP algorithm time performance. 
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VI. Conclusion and Further Works 

 

 In this work a real-time motion planning algorithm was developed using the ASE-SCP. An enhancement step was 

also introduced, and this step avoids the algorithm to get stuck around the obstacles. The developed algorithm was 

further improved with an emergency protocol that stops quadcopter in critical scenarios. 

 Multiple basic simulations were performed to evaluate the real-time capabilities of the algorithm The relevant 

simulations have demonstrated that the optimized route can guide quadcopter track target and avoid obstacle at the 

same time. The algorithm proved that it could perform nearly real-time motion planning for static targets in 

environment with fixed obstacles. According to the problem of obstacle avoidance, A* algorithm is employed. Then, 

SCP was utilized to plan a suboptimal path in real time. 

 For future work, the proposed algorithm will be implemented to track moving targets and avoid static obstacles 

and moving threats at the same time. It will also be extended a three dimensional (3D) real time motion planning 

challenges for terrain following and landing scenarios. 
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Appendix 

A. Quadcopter Mathematical Model 

The quadcopter dynamics will be presented by using Newton and Euler equations for the 3D motion of a rigid 

body. This mathematical model of quadcopter will provide required equations for simulation, control, and 

optimization activities, this model taken from reference [13]. 

 

Let us call [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓]𝑇 the vector including the linear and angular position of the quadcopter in the earth frame 

and [𝑢 𝑣 𝑤 𝑝 𝑞 𝑟]𝑇 the vector including the linear and angular velocities in the body frame. 

 

𝐯 = 𝐑 . 𝐯𝐁 (4) 

𝝎 = 𝐓 .𝝎𝑩 (5) 

 

And the T is angular transformation matrix: 

 

𝑻 = [

1 𝑠(𝜙)𝑡(𝜃) 𝑐(𝜙)𝑡(𝜃)

0 𝑐(𝜙) −𝑠(𝜙)

0 𝑠(𝜙)

𝑐(𝜃)

𝑠(𝜙)

𝑐(𝜃)

] (6) 

 

So, the kinematic model of the quadcopter is: 

 

 𝑥̇ = 𝑤[𝑠(𝜙)𝑠(𝜓) + 𝑐(𝜃)𝑐(𝜓)𝑠(𝜃)] − 𝑣[𝑐(𝜙)𝑠(𝜓) − 𝑐(𝜓)𝑠(𝜙)𝑠(𝜃)] + 𝑢[𝑐(𝜓)𝑐(𝜃)]  

 

(7) 
 𝑦̇ = 𝑣[𝑐(𝜙)𝑐(𝜓) + 𝑠(𝜙)𝑠(𝜓)𝑠(𝜃)] − 𝑤[𝑐(𝜓)𝑠(𝜙) − 𝑐(𝜙)𝑠(𝜓)𝑠(𝜃)] + 𝑢[𝑐(𝜃)𝑠(𝜓)] 
 𝑧̇ = 𝑤[𝑐(𝜙)𝑐(𝜃)] − 𝑢[𝑠(𝜃)] + 𝑣[𝑐(𝜃)𝑠(𝜙)] 
 𝜙̇ = 𝑝 + 𝑟[𝑐(𝜙)𝑡(𝜃)] + 𝑞[𝑠(𝜙)𝑡(𝜃)] 
 𝜃̇ = 𝑞[𝑐(𝜙)] − 𝑟[𝑠(𝜙)] 
 𝜓̇ = 𝑟

𝑐(𝜙)

𝑐(𝜃)
+ 𝑞

𝑠(𝜙)

𝑐(𝜃)
 

 

and the total force acting on the quadcopter: 

 

𝑚(𝝎𝐁 ∧ 𝐯𝐁 + 𝐯𝐁̇) = 𝐟𝐁 (8) 

 

where m is the mass of the quadcopter, ⋀ is the cross product and 𝒇𝑩 = [𝑓𝑥 𝑓𝑦 𝑓𝑧]
𝑇

∈ ℝ3 is the total force. Euler’s 

equation gives the total torque applied to the quadrotor: 

 

Ι ∙ 𝛚̇𝐁 + 𝝎𝑩 ∧ (𝚰 ∙ 𝛚𝐁) = 𝐦𝐁 (9) 

 

where 𝒎𝑩 = [𝑚𝑥 𝑚𝑦 𝑚𝑧]
𝑇

∈ ℝ3𝑥3 is the total torque and Ι is the diagonal inertia matrix: 

 

𝚰 = [

Ιx 0 0
0 Ι𝑦 0

0 0 Ι𝑧

] ∈ ℝ𝟑𝒙𝟑 

 

(10) 

 

So, the dynamic model of the quadcopter in the body frame is: 

 

 𝑓𝑥 = 𝑚(𝑢̇ + 𝑞𝑤 − 𝑟𝑣)  

 

(11) 
 𝑓𝑦 = 𝑚(𝑣̇ − 𝑝𝑤 + 𝑟𝑢) 

 𝑓𝑧 = 𝑚(𝑤̇ + 𝑝𝑣 − 𝑞𝑢) 

 𝑚𝑥 = 𝑝̇𝐼𝑥 − 𝑞𝑟𝐼𝑦 + 𝑞𝑟𝐼𝑧  

 𝑚𝑦 = 𝑞̇𝐼𝑦 + 𝑝𝑟𝐼𝑥 − 𝑝𝑟𝐼𝑧 

 𝑚𝑧 = 𝑟̇𝐼𝑧 − 𝑝𝑞𝐼𝑥 + 𝑝𝑞𝐼𝑦  
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Set 𝐮 to be the control vector: 𝐮 = [𝑓𝑡 𝜏𝑥  𝜏𝑦 𝜏𝑧]
𝑇

∈  ℝ4. Let us consider the values of the input forces and torques 

proportional to the squared speeds of rotors, their values are the following: 

 

 𝑓𝑡 = 𝑏(Ω1
2 + Ω2

2 + Ω3
2 + Ω4

2)  

 

(12) 
 𝜏𝑥 = 𝑏𝑙(Ω3

2 − Ω1
2) 

 𝜏𝑦 = 𝑏𝑙(Ω4
2 − Ω2

2) 

 𝜏𝑧 = 𝑑(Ω2
2 + Ω4

2 − Ω1
2 − Ω3

2) 

 

where l is the distance between any rotor and the center of gravity of the drone, b is the thrust factor and d is the drag 

factor. And after the substitution, the dynamic model of the quadcopter in the body frame is: 

 

 −𝑚𝑔[𝑠(𝜃)] = 𝑚(𝑢̇ + 𝑞𝑤 − 𝑟𝑣)  

 

 

(13) 

 𝑚𝑔[𝑐(𝜃)𝑠(𝜙)] = 𝑚(𝑣̇ − 𝑝𝑤 + 𝑟𝑢) 

 𝑚𝑔[𝑐(𝜃)𝑐(𝜙)] − 𝑏(Ω1
2 + Ω2

2 + Ω3
2 + Ω4

2) = 𝑚(𝑤̇ + 𝑝𝑣 − 𝑞𝑢) 

 𝑏𝑙(Ω3
2 − Ω1

2) = 𝑝̇𝐼𝑥 − 𝑞𝑟𝐼𝑦 + 𝑞𝑟𝐼𝑧 

 𝑏𝑙(Ω4
2 − Ω2

2) = 𝑞̇𝚤𝑦 + 𝑝𝑟𝐼𝑥 − 𝑝𝑟𝐼𝑧 

 𝑑(Ω2
2 + Ω4

2 − Ω1
2 + Ω3

2) = 𝑟̇𝐼𝑧 − 𝑝𝑞𝐼𝑥 + 𝑝𝑞𝐼𝑦  

 

B. Linear Model 

The linearization’s procedure is developed around an equilibrium point 𝒙, which for fixed input 𝒖̅ is the solution 

of the algebraic system. 

 

𝐟(𝐱̅, 𝐮̅) = 𝟎 (14) 

 

The simplification is made by approximating the sine function to its argument and cosine function to unity. 

Therefore, the linearization will be performed on a simplified model called to small oscillations. Only the 

approximation is valid if the argument is small. 

 

 𝜙̇ ≈ 𝑝 + 𝑟𝜃 + 𝑞𝜙𝜃 

(15) 

 𝜃̇ ≈ 𝑞 − 𝑟𝜙 

 𝜓̇ ≈ 𝑟 + 𝑞𝜙 

 𝑝̇ ≈
𝐼𝑦−𝐼𝑧

𝐼𝑥
𝑟𝑞 +

𝜏𝑥

𝐼𝑥
 

 𝑞̇ ≈
𝐼𝑧−𝐼𝑥

𝐼𝑦
𝑝𝑟 +

𝜏𝑦

𝐼𝑦
 

 𝑟̇ ≈
𝐼𝑥−𝐼𝑦

𝐼𝑧
𝑝𝑞 +

𝜏𝑧

𝐼𝑧
 

 𝑢̇ ≈ 𝑟𝑣 − 𝑞𝑤 − 𝑔𝜃 

 𝑣̇ ≈ 𝑝𝑤 − 𝑟𝑢 + 𝑔𝜙 

 𝑤̇ ≈ 𝑞𝑢 − 𝑝𝑣 + 𝑔 −
𝑓𝑡

𝑚
 

 𝑥̇ ≈ 𝑤(𝜙𝜓 + 𝜃) − 𝑣(𝜓 − 𝜙𝜃) + 𝑢 

 𝑦̇ ≈ 𝑣(1 + 𝜙𝜓𝜃) − 𝑤(𝜙 − 𝜓𝜃) + 𝑢𝜓 

 𝑧̇ ≈ 𝑤 − 𝑢𝜃 + 𝑣𝜙 

 

And the compact form is: 

 

𝐱̇ = 𝐟(𝐱, 𝐮) (16) 
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So, after the perform the linearization, the linear model is: 

 

𝐱̇ = 𝐀 ⋅ 𝐱 + 𝐁 ⋅ 𝐮 + 𝐃 ⋅ 𝐝 (17) 

 

𝜙̇ = 𝑝 

(18) 

𝜃̇ = 𝑞 

𝜓̇ = 𝑟 

𝑝̇ =
𝜏𝑥

𝐼𝑥
 

𝑞̇ =
𝜏𝑦

𝐼𝑦
 

𝑟̇ =
𝜏𝑧

𝐼𝑧
 

𝑢̇ = −𝑔𝜃 

𝑣̇ = 𝑔𝜙 

𝑤̇ = −
𝑓𝑡

𝑚
 

𝑥̇ = 𝑢 

𝑦̇ = 𝑣 

𝑧̇ = 𝑤 

 

Here are the matrices that associated to the linear system: 

 

𝑨 =
𝛿f(𝐱, 𝐮)

𝛿𝐱
|
x=x̅
u=u̅

=

[
 
 
 
 
 
 
 
 
 
 
 
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 −𝑔 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0]

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

(19) 

 

𝑩 =
𝛿f(𝐱, 𝐮)

𝛿𝐮
|
x=x̅
u=u̅

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0
0 1

𝐼𝑥
0 0

0 0 1

𝐼𝑦
0

0 0 0 1

𝐼𝑧

0 0 0 0
0 0 0 0
1

𝑚
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(20) 
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𝑫 =
𝛿f(𝐱, 𝐮, 𝐝)

𝛿𝐝
|
x=x̅
u=u̅

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1

𝐼𝑥
0 0

0 0 0 0 1

𝐼𝑦
0

0 0 0 0 0 1

𝐼𝑧
1

𝑚
0 0 0 0 0

0 1

𝑚
0 0 0 0

0 0 1

𝑚
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(21) 
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C. Pseudo Algorithm 
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