
1

Multi-Fidelity Aerodynamic Dataset

Generation of a Fighter Aircraft with a Deep

Neural-Genetic Network

Murat MILLIDERE 1 and Fazil Selcuk GOMEC 2
Middle East Technical University, Ankara, Turkey

Turkish Aerospace, Ankara, Turkey

Huseyin Burak KURT 3
Turkish Aerospace, Ankara, Turkey

Ferhat AKGUL 4
Middle East Technical University, Ankara, Turkey

This paper is a follow-up study on prior research work on multi-fidelity aerodynamic dataset

generation. The prior work studied a comparison of modified Variable-Complexity Modelling

and co-Kriging methods applied to F-16 fighter aircraft. In this research, the multi-fidelity deep

neural-genetic network method is introduced. The results provide evidence that the deep neural-

genetic network method in this paper can be employed in dealing with the aerodynamic data

fusion problem.

Nomenclature

HF = High-Fidelity

LF = Low-Fidelity

MF = Multi-Fidelity

𝐶𝐷 = Drag Force Coefficient

𝐶𝐿 = Lift Force Coefficient

𝐶𝑚 = Pitch Moment Coefficient

𝛼 = Angle of Attack

𝛿ℎ𝑡 = Horizontal Tail Deflection

GA = Genetic Algorithm

z = Observed Response Data

y = Model Response Data

n = Number of samples in the Dataset

CFD = Computational Fluid Dynamics

VCM = Variable Complexity Modelling

ANN = Artificial Neural Network

FNN = Feedforward Neural Network

MLP = Multi-Layer Perceptron

DNN = Deep Neural Network

GA = Genetic Algorithm

DNGN = Deep Neural-Genetic Network

I.Introduction

There are several sources to generate the aerodynamic dataset. These are semi-empirical datasheet methods, linear

flow solvers, nonlinear flow solvers, small-scale wind tunnel tests, full-scale wind tunnel tests, and flight tests in the

increasing order of fidelity. As fidelity increases, computational time and cost increase. For aerodynamic database

generation, various computational and experimental methods can be utilized with respect to the cost and accuracy

1 Graduate Student, Ph.D. Candidate, Department of Engineering Sciences, AIAA Student Member.
2 Aeroacoustics and Aerodynamic Analysis Chief Engineer.
3 Flight Dynamics, Simulation and Control Engineer.
4 Assoc. Prof., Department of Engineering Sciences.

2

requirements of the design phase. A summary of these methods with sample tools and classifications is provided [1]

[2]. As expected, the higher the cost, the more accurate the aerodynamic database. Each method's resource and time

cost are essentially tens to hundreds of times higher than those of the less accurate method [3].

Data fusion is one of the functional approaches to obtain an aerodynamic dataset. However, using only a high-

fidelity wind tunnel test or high-fidelity computational analysis for the aerodynamic dataset generation is expensive

to perform in terms of cost, time, or resources. Therefore, the primary motivation of data fusion is to achieve high-

fidelity data in a cheaper fashion where low-fidelity aerodynamic data provides the trend information.

This paper presents a follow-up study from prior work [4]. Ref. [4] has shown the comparison of two different

data fusion techniques being modified Variable-Complexity Modelling (VCM) [5] and co-Kriging method [6] [7].

The prior work also showed the benefit of using the co-Kriging method. In addition, this paper introduces a new

technique called a deep neural-genetic network (DNGN).

Neural networks have shown significant successes in dealing with large-scale data. They can easily handle linear

or nonlinear problems at low- and high-dimensions [8] [9]. Artificial neural networks (ANN) work as a general

function approximation and approximate any continuous function to any desired accuracy by appropriate network

architecture. This ability of neural networks makes it popular in aerospace problems. However, some elements are not

autonomously updated in the training process for neural networks called hyperparameters. The hyperparameter is not

the variable that needs to be tuned or optimized through neural network training, but the variable that is set by a priori

knowledge, e.g., number of layers, number of nodes in each layer, solver algorithm, backpropagation algorithm

factors, activation function for each layer, initial weights and biases scale factor and so on. The performance of a

neural network is highly sensitive to the choice of hyperparameters. Settings for these hyperparameters can

significantly influence the resulting accuracy of the predictive models, and there are no clear defaults that work well

for different problems and data sets.

Choosing the best hyperparameters is the primary challenge in designing a neural network. If the developer doesn’t

have solid experience with the neural network, it is difficult to obtain a good model with the neural network. The new

technique aims to automate the process of hyperparameter setting without the need for expert intervene. This explains

the necessity of the optimization of these hyperparameters. In this study, hyperparameter optimization of deep

feedforward neural network (FNN) was examined using a genetic algorithm, which is called a deep neural-genetic

network.

In this paper, the wind tunnel test data is considered a high-fidelity dataset, and the data from the semi-empirical

approach (Datcom) is considered a low-fidelity dataset. The aerodynamic dataset is generated using the DNGN

approach.

The rest of the paper is organized as follows: Section II presents the proposed approach. Then, the results and

discussion are presented in Section III. And finally, conclusions are drawn, and future works are given in Section IV.

II.Multi-Fidelity Deep Neural-Genetic Network Algorithm

In this section, the structure of deep feedforward neural networks and how the genetic algorithm is applied to deep

feedforward neural network structure are covered.

A. Deep Neural Network Structure

The simplest type of feedforward neural network is the perceptron (artificial neuron), which has only an input layer

and an output layer. A perceptron simply has three sets of rules; multiplication, summation, and activation. In general,

the mathematical formula of an artificial neuron is given in Eq. (1).

𝑎 = 𝜎 ((∑ 𝑤𝑖𝑢𝑖

𝑖

) + 𝑏)

(1)

where

𝑢𝑖 - the inputs to the artificial neuron

𝑤𝑖 - the weight value corresponding to each input.

𝑏 - the bias

𝜎 - the activation function of an artificial neuron.

𝑎 - the activation (output value) of artificial neuron.

3

The multi-layer perceptron (MLP) is a feedforward neural network consisting of many perceptrons. MLP has three

kinds of layers; input layer, hidden layer, and output layer. Each neural network must have one input and output layer,

but they can have many hidden layers. MLP with two or more hidden layers between the input and output nodes are

often classified as feedforward deep neural network or deep neural network [10]. The power of feedforward neural

networks to approximate complex nonlinear functions lies in the universal approximation theorem [11]. A simple

MLP structure is given in Figure 1.

Figure 1 Simple neural network structure.

In Figure 1, there is a typical MLP neural network, which consists of four layers, and these are called the input

layer, the first hidden layer, the second hidden layer, and the output layer, respectively. The output of each layer is

obtained as follows:

{𝑎𝑖}(𝑘) = {𝜎}(𝑘) ((∑{𝑤𝑖𝑗}(𝑘){𝑎𝑖}(𝑘)

𝑗

) + {𝑏𝑖}(𝑘))

(2)

where

{𝑎𝑖}(𝑘) - the output of 𝑖th neuron in the 𝑘th layer

{𝑤𝑖𝑗}(𝑘) - the weight of the connection from the 𝑗th neuron in the (𝑘 − 1)th layer to the 𝑖th neuron in the 𝑘th layer

{𝑏𝑖
}

(𝑘)

 - the bias term of the 𝑖th neuron in the 𝑘th layer.

{𝜎}(𝑘) - the activation function in the 𝑘th layer.

We refer to the activations of the input units as 𝑢𝑗 and the activation of the output units as 𝑦𝑗

{𝑎𝑖}(0) = 𝑢𝑖 (3)

The outputs of the neurons in the last layer can be seen as the overall networks’ outputs:

𝑦𝑖 = {𝑎𝑖}(3) (4)

4

The activation function used in the artificial neuron is a critical element of a deep neural network. Without

activation function, deep neural networks cannot learn nonlinear functions. Thus, the activation function provides a

neural network some nonlinearities. There are many activation functions used in literature, but the most commonly

used activation functions are illustrated in Figure 2.

Figure 2 Most commonly used activation functions representation.

A two hidden layer deep neural network with linear transfer function at output layer is selected for this study. And,

instead of matching the multiple outputs through a single network, multiple modules are used, each consisting of a

suitable neural network characterizing just one aerodynamic coefficient. For regression, we use sum-of-squared errors

as our measure of fit (objective function). The mean square error (MSE) method is used to calculate neural network

loss, and MSE is given in Equation (5).

MSE𝑇𝑟𝑎𝑖𝑛 =
1

𝑛𝑑𝑎𝑡𝑎

 ∑ (𝑧𝑗 − 𝑦𝑗)
2

𝑛𝑑𝑎𝑡𝑎

𝑗=1

(5)

𝑗 - The discrete data index

𝑛𝑑𝑎𝑡𝑎 - Number of data

𝑧𝑗 - Measured (actual) data in 𝑗th discrete data index

𝑦𝑗 - Estimated data in 𝑗th discrete data index

Another important concept of the neural network is used backpropagation algorithm. Among many

backpropagation algorithms, the Levenberg-Marquardt backpropagation algorithm is chosen for this study since it is

fast and gives better results [12]. It is a combination of Gradient Descent and Gauss-Newton optimization. Table 1

presents the hyperparameters of the Levenberg-Marquardt Algorithm.

Table 1 The hyperparameters of Levenberg-Marquardt algorithm.

Name Symbol

1 Initial Dampening Factor 𝜇0

2 Increase Dampening Factor 𝜇𝑑𝑒𝑐

3 Decrease Dampening Factor 𝜇𝑖𝑛𝑐

4 Maximum Dampening Factor 𝜇̅

1. Some Issues in Deep Neural Network Training

 There are several important issues associated with the setup of the neural network, preprocessing, and initialization.

Therefore, neural network training can be made more efficient if specific steps are performed for these issues. In this

sub-section, several important issues are described [12] [13].

5

Scaling of the Inputs and Outputs (Feature Preprocessing)

 Data scaling is recommended before applying the optimization methods [14]. This is found to be particularly the

case while training feedforward neural networks. Here, scaling refers to arranging the values between the chosen lower

and upper limits such that all of the variables have a similar order of magnitudes. All data is scaled to the range [0,1]

or [-1,1] generally [12] [14] [15] [16]. All data is scaled to the range [-1,1] to reduce numerical error during neural

network training as recommended by [12].

𝒖𝑛
𝑖 = −1 +

2(𝒖𝒊 − 𝒖𝑚𝑖𝑛
𝑖)

𝒖𝑚𝑎𝑥
𝑖 − 𝒖𝑚𝑖𝑛

𝑖

𝒚𝑛 = −1 +
2(𝒚 − 𝒚𝑚𝑖𝑛)

𝒚𝑚𝑎𝑥 − 𝒚𝑚𝑖𝑛

(6)

 where ()𝑚𝑖𝑛, ()𝑚𝑎𝑥, and ()𝑛 are the minimum, maximum, and normalized values of the considered variable,

respectively.

The initial weights

 Initial weight assignment is one of the essential steps in neural network setup. The initial weights are generally set

to small random numbers to avoid saturation in the neurons. It was observed that the algorithm does not work correctly

if the initial weights are either zero or poorly chosen nonzero values [14]. The use of exact zero weights leads to zero

derivatives and perfect symmetry, and the algorithm never moves. Starting instead with large weights often leads to

inadequate solutions [17]. To avoid the saturation region of the activation function, the weighted sum output value

becomes near to 0 as much as possible, which can increase the weight adjustment range. Therefore, the initial

connection weights are usually random numbers between [-1,1] so that the network is not significantly affected [18].

 In this study, initial weights and biases are set between random numbers between [-1,1] and scaled by scale factors

between [0,1].

2. Feedforward deep neural network model validation

The performance of the neural network is an important criterion to assess the optimized hyperparameters. The

available dataset is divided into training and testing datasets, firstly. The testing dataset, which is not seen in the

identification phase, is used to assess the final performance at the end of the model identification. However, we should

remark that the training dataset can be used in different ways to assess the fitted model using various resampling

methods in the identification phase. e.g., train-validation split (hold-out cross-validation), 𝑘-fold cross-validation, or

bootstrap approaches. It was shown that the 𝑘-fold cross-validation approach is superior to the hold-out cross-

validation and bootstrap approaches [19]. For this study, the dataset is divided two-part; training (80%), testing (20%),

and 𝑘-fold cross-validation approach is used to validate the neural network.

B. Hyperparameter Optimization Methods

 The hyperparameters that define a deep neural network can be separated into two categories: the ones that define

the architecture of the network and the ones that affect the optimization process of the training phase. The proposed

method considers both categories at once.

 Tuning the hyperparameters of a deep neural network is a critical process that was mainly done manually, relying

on the previous experience of the experts (manual search). This is usually done using a trial-and-error process.

However, even with expertise in deep neural networks and their hyperparameters, the best set of these hyperparameters

changes with different data and is time-consuming. To address this problem, the ability to find the optimal

hyperparameters in an automated manner is needed. Since genetic algorithm theory is a mature and widely used

optimization routine, the automated hyperparameter selection in Deep Neural Network is made via a genetic algorithm.

1. Genetic Algorithm

 Genetic algorithms are optimization methods that are inspired by biological evolution. Genetic algorithms operate

on a population of candidate solutions and apply the principle of survival of the fittest to evolve the candidate solutions

towards the desired optimal solutions. In a genetic algorithm, candidate solutions are referred to as individuals or

parameters. A population refers to a group of individuals. There are six phases in a genetic algorithm: initial

population, fitness evaluation, selection, crossover, mutation, and elitism. The reader is referred to Refs. [20] [21] [22]

[23] for detail description of genetic algorithms. Figure 3 illustrates the steps of a typical genetic algorithm.

6

Figure 3 Typical Genetic Algorithm flowchart.

C. Hybridization of Genetic Algorithm with Deep Neural Network

Figure 4 shows a deep neural network flowchart. The measured output and predicted output are compared, and an

objective function is measured to evaluate the neural network's performance. Weights and biases are updated using a

solver (optimization) algorithm to minimize the objective function. Neural Network architecture/solver

hyperparameters and initial weights/biases must be decided before the optimization routine starts.

Figure 4 Deep Neural Network flowchart.

Table 2 and Table 3 summarize the hyperparameters responsible for defining the structure of the network.

Table 2 User-defined neural network hyperparameters.

Hyperparameter Ranges and Functions

1 Architecture 2 hidden layer feed forward neural network

2 Fitness function Training dataset MSE

3 Solver Levenberg-Marquardt Optimization

4 Epoch 300

5 Maximum dampening factor for solver, 𝜇̅ 10000

7

Table 3 Deep Neural Network hyperparameters tuned by Genetic Algorithm.

Hyperparameter Ranges and Functions

1 Number of neurons in the first hidden layer {1,2,…,50}

2 Activation function for the first hidden layer {Logsig, Tansig, ReLU, Linear}

3 Number of neurons in the second hidden layer {1,2,…,50}

4 Activation function for the second hidden layer {Logsig, Tansig, ReLU, Linear}

5 Weights and biases initization factor [0,1]

6 Initial Dampening factor for solver, 𝜇0 {0.01, 0.02, …, 0.1}

7 Increase factor for solver, 𝜇𝑖𝑛𝑐 {2, 3, …, 10}

8 Increase factor for solver, 𝜇𝑑𝑒𝑐 {1 2⁄ , 1 3⁄ , …, 1 10⁄ }

D. Multi-Fidelity Deep Neural-Genetic Network Algorithm Implementation

The implementation of the Multi-Fidelity DNGN algorithm is as follows:

1. A low-fidelity DNGN model is build using a low-fidelity dataset.

𝑓(𝑢𝐿𝐹) ≈ 𝑓𝐿𝐹(𝑢𝐿𝐹) (7)

2. Predict low-fidelity values for each data point in the high-fidelity dataset. This step is necessary because the given

dataset probably is not taken in the same aerodynamic condition.

𝑓(𝑢𝐻𝐹) ≈ 𝑓𝐿𝐹(𝑢𝐻𝐹) (8)

3. The increments or differences are calculated between low-fidelity data at each high-fidelity data point, which is

calculated in step-2 and high-fidelity data.

𝛽(𝑢𝐻𝐹) = 𝑓𝐻𝐹(𝑢𝐻𝐹) − 𝑓𝐿𝐹(𝑢𝐻𝐹) (9)

4. The increment function is calculated by using the set of increments or differences data which are found in step-3

using the DNGN approach.

5. Data fusion function is a simple summation of low-fidelity Kriging and increment Kriging model for the desired

data point.

𝑓(𝑢) ≈ 𝑓𝐿𝐹(𝑢) + 𝛽(𝑢) (10)

When the broad range of aircraft flight envelope is considered, these aerodynamics coefficients have nonlinear

relationships with their dependent variables. The two separate fully-connected neural networks can be employed to

approximate the linear and nonlinear part of increment function for the low- and high-fidelity data [24]. But to reduce

the computational effort, the nonlinearity in the increment function is expressed using spline functions. Spline

functions are defined only on the subintervals and can approximate nonlinearities quite well. The angle of attack range

is divided and added as dependencies to neural network inputs for improving performances. Parameters dependent on

the angle of attack in longitudinal coefficients are expressed using spline functions [25] in the form

(𝛼 − 𝛼𝑖)+
𝑚 = {

(𝛼 − 𝛼𝑖)
𝑚 𝛼 ≥ 𝛼𝑖

0 𝛼 < 𝛼𝑖

(11)

III.Results and Discussions

A. Data Preparation and Evaluation

 In this study, a two-dimensional aerodynamic force data fusion problem was considered. Digital Datcom constructs

the aerodynamic database of F-16 aircraft to function the angle of attack and the horizontal tail deflection. Moreover,

wind tunnel tests are adapted to improve the database. The former represents the low-fidelity dataset, while the latter

does the high-fidelity dataset. The wind tunnel results are obtained from the open-source F-16 aircraft data [26]. Digital

8

Datcom includes empirical methods for aerodynamic data predictions. Thus, it enables fast and reasonably accurate

computations in conceptual design phases.

 The primary geometry of F16 is obtained from OpenVSP-Hangar, as shown in Figure 2 [27]. The fuselage

geometry is prepared from this geometry while the wing, horizontal tail, and vertical tail geometries are modified with

respect to a supersonic wind tunnel test campaign [28]. The model is on a 1/15 scale.

Figure 5. Top, isometric, bottom, and left-side view of F16-OpenVSP geometry

 The aerodynamic database is created for clean aircraft and horizontal tail deflections. The angle of attack ranges

between 0° and 30° while the Mach number is set to 0.2 at sea level flight condition. For the non-dimensional

coefficients, the mean aerodynamic chord is selected as 3.45 m while the span is set to 9.15 m. Additionally, the wing

area is set to 27.86 𝑚2.

 There were 775 and 341 points at the low- and high-fidelity levels, respectively. The data encompassed 𝛼 and

𝛿ℎ𝑡 values in the ranges:

𝛼𝐿𝐹 = {0°, 1°, 2°, ⋯ ,30°}

𝛿ℎ𝑡𝐿𝐹
= {−25°, −22°, −20°, −18°, −16°, −14°, −12°, −10°, −8°, −6°, −4°, −2°, 0°, 2°, ⋯ ,22°, 25°}

𝛼𝐻𝐹 = {0°, 1°, 2°, ⋯ ,30°}

𝛿ℎ𝑡𝐿𝐹
= {−25°, −20°, −15°, −10°, −5°, 0°, 5°, 10°, 15°, 20°, 25°}

(12)

 Drag, lift and pitch moment coefficients of F-16 aircraft geometry for low- and high-fidelity datasets are compared

in the prior work [4]. Since the main idea is to improve the data quality of a low-fidelity model, these comparisons

are helpful to observe differences between low- and high-fidelity models. Lift and drag coefficients of the low-fidelity

dataset are much more correlated than the pitch moment coefficient for the high-fidelity dataset.

B. Multi-Fidelity Deep Neural-Genetic Network Results

 The qualitative accuracy spreads of the testing samples of the longitudinal coefficients are shown in Figure 6. All

points are clustered along the equality line; the predicted values are close to the true value, which shows that the

proposed method shows good performance in the testing data sets.

9

a) 𝐶𝐷

b) 𝐶𝐿

c) 𝐶𝑚

Figure 6 Accuracy spread of the high-fidelity testing points for aerodynamic coefficients.

The GA has its own set of hyperparameters. The choice of genetic algorithm hyperparameters should be carried

out carefully. Any wrong choice produces meaningless results. The hyperparameters are defined with respect to Ref.

[29]. The hyperparameters for the genetic algorithm that is set in this application are provided in Table 4.

Table 4 Genetic Algorithm hyperparameters.

Hyperparameter Value and Description

1 Number of population 50

2 Number of generation 20

3 Fitness function k-fold CV estimate of DNN

4 Selection method Roulette wheel

5 Crossover operator Crossover operator

6 Crossover fraction 0.8

7 Mutation operator Gaussian

8 Mutation fraction 0.05

9 Elite count 2

10 Data used Training dataset

In this case, there were two hidden layers used within the low-fidelity neural network, while two hidden layers

were used within increment function neural networks, respectively. The training time of the model was closely related

to the number of training data and the number of epochs. The training MSE of longitudinal coefficients already reached

steady-state values at around 150 epochs, before which the weights of the network were rapidly tuned to optimize the

prediction model. Hence, the maximal number of epochs was set to 250 for the proposed method to reduce the training

time.

 It is observed that the deep neural network is not sensitive to the LM solver hyperparameters because the relative

standard deviation, which is the standard deviation over the mean of the hyperparameters, is higher than one. That’s

why we can use the average results for these hyperparameters, which are tabulated in Table 5. The optimum

hyperparameters yielding the minimum MSE over 20 runs of the proposed method are provided in Tables 6-8.

Table 5 Proposed Levenberg-Marquardt solver hyperparameters

Hyperparameter
Proposed

Value

1 Initial Dampening factor for the solver, 𝜇0 0.46

2 Increase factor for solver, 𝜇𝑖𝑛𝑐 6.00

3 Increase factor for solver, 𝜇𝑑𝑒𝑐 0.49

10

Table 6 Tuned Deep Neural Network hyperparameters for the lift coefficient.

Hyperparameter

Low-Fidelity

Neural Network

Increment

Neural Network

Value Value

1 Number of neurons in the first hidden layer 15 8

2 Activation function for the first hidden layer Tansig Tansig

3 Number of neurons in the second hidden layer 9 13

4 Activation function for the second hidden layer Tansig Tansig

5 Bias initialization factor 0.60 0.80

6 Initial weight scale factor 0.40 0.40

7 The first hidden layer weight scale factor 0.80 0.70

8 The second hidden layer weight scale factor 0.30 1.00

Table 7 Tuned Deep Neural Network hyperparameters for the drag coefficient.

Hyperparameter

Low-Fidelity

Neural Network

Increment

Neural Network

Value Value

1 Number of neurons in the first hidden layer 9 6

2 Activation function for the first hidden layer Logsig Tansig

3 Number of neurons in the second hidden layer 12 6

4 Activation function for the second hidden layer Logsig Logsig

5 Bias initialization factor 0.70 0.40

6 Initial weight scale factor 0.40 0.80

7 The first hidden layer weight scale factor 0.90 0.40

8 The second hidden layer weight scale factor 0.60 0.40

Table 8 Tuned Deep Neural Network hyperparameters for the pitch moment coefficient.

Hyperparameter

Low-Fidelity

Neural Network

Increment

Neural Network

Value Value

1 Number of neurons in the first hidden layer 13 14

2 Activation function for the first hidden layer Tansig Logsig

3 Number of neurons in the second hidden layer 12 10

4 Activation function for the second hidden layer Logsig Tansig

5 Bias initialization factor 0.30 0.60

6 Initial weight scale factor 0.80 1.00

7 The first hidden layer weight scale factor 0.10 0.70

8 The second hidden layer weight scale factor 0.30 0.70

 Figure 7 to Figure 9 shows that the predicted trends of longitudinal characteristics obtained with the DNGN method

are shown with a true low- and high-fidelity dataset. 𝐶𝐿 vs 𝛼, 𝐶𝐷 vs 𝛼 , and 𝐶𝑚 vs 𝛼 plot for Mach 0.2 and

−20°, −10°, 0° , 10°, 20° horizontal tail deflections are given in Figure 7 to Figure 9 respectively.

11

(a) 𝛿ℎ𝑡 = −20°

(b) 𝛿ℎ𝑡 = −10°

(c) 𝛿ℎ𝑡 = 0°

(d) 𝛿ℎ𝑡 = 10°

(e) 𝛿ℎ𝑡 = 20°

Figure 7 The predicted trends of 𝑪𝑳 coefficient with the DNGN method.

12

(a) 𝛿ℎ𝑡 = −20°

(b) 𝛿ℎ𝑡 = −10°

(c) 𝛿ℎ𝑡 = 0°

(d) 𝛿ℎ𝑡 = 10°

(e) 𝛿ℎ𝑡 = 20°

Figure 8 The predicted trends of 𝑪𝑫 coefficient with the DNGN method.

13

(a) 𝛿ℎ𝑡 = −20°

(b) 𝛿ℎ𝑡 = −10°

(c) 𝛿ℎ𝑡 = 0°

(d) 𝛿ℎ𝑡 = 10°

(e) 𝛿ℎ𝑡 = 20°

Figure 9 The predicted trend of 𝑪𝒎 coefficient with the DNGN method.

14

IV. Conclusion

A simple F16 fighter aircraft geometry is obtained from publicly open resources, and its geometric details are

corrected. Datcom input file is created, and the subsonic aerodynamic database of F16 is generated for the baseline

and deflected horizontal tail configurations. This database is then assigned as the low-fidelity dataset. On the other

hand, subsonic wind tunnel data of F16 is obtained as the high-fidelity data. The differences in low and high-fidelity

datasets are clarified: similar trends are observed for the lift and drag coefficients, although some sorts of variable

shifts exist between these datasets. However, the trends in pitch moment are not compatible with the lift and drag

coefficients in the similarity of the low- and high-fidelity datasets.

The Deep Neural-Genetic Network approach is used to derive high-fidelity datasets using more low-fidelity

datasets and less high-fidelity datasets to reduce the computational cost of high-fidelity dataset generation. The

proposed method yielded promising results, particularly for the drag and lift coefficients.

In the Deep Neural-Genetic Network approach, the deep neural network hyperparameters, including the number

of neurons in each layer, activation function for each layer, biases and weights scale factors, and Levenberg-Marquardt

solver hyperparameters, were optimized by a Genetic Algorithm. It is observed that different choices of Levenberg-

Marquardt hyperparameters are seen to give essentially the same performance because this algorithm adjusts the

damping at each iteration. It is also observed that the number of neurons in each layer and activation function for each

layer are the most dominant hyperparameters affecting deep neural network performance.

Experiment design is the critical factor for surrogate prediction accuracy. In future work, different design of

experiments approaches will be implemented.

V.References

[1] B. Peerlings, "A review of aerodynamic flow models, solution methods and solvers and their applicability to

aircraft conceptual design," Delft University of Technology, Delft, 2018.

[2] M. Tyan, M. Kim, V. Pham, C. Choi, L. Nguyen and J. W. Lee, "Development of Advanced Aerodynamic Data

Fusion Techniques for Flight Simulation Database Construction," in AIAA Aviation Forum, Atlanta, GA, 2018.

[3] Q. Liu, P. Zhang, W. Xiao and J. D. Diao, "Correction Methods of Aerodynamic Force and Moment Coefficients

Based on the Identification Data," in Chinese Control Conference, Guangzhou, China, 2019.

[4] H. B. Kurt, M. Millidere, F. S. Gömeç and Ö. Uğur, "Multi-fidelity Aerodynamic Dataset Generation of a

Fighter Aircraft," in AIAA SciTech Forum, Virtual Event, 2021.

[5] C. Tang, K. Gee and S. Lawrence, "Generation of Aerodynamic Data Using a Design of Experiment and Data

Fusion Approach," in AIAA Aerospace Science Meeting and Exhibit, Reno, NV, 2005.

[6] A. Forrester, A. Sobester and A. Keane, Engineering Design via Surrogate Modelling: A Practical Guide, A

John Wiley and Sons Inc, 2008.

[7] A. Forrester, A. Sobester and A. Keane, "Multi-fidelity optimization via surrogate modelling," Proceedings of

the Royal Society: A Mathematical, Physical and Engineering Sciences, vol. 463, no. 2088, pp. 3251-3269,

2007.

[8] X. Meng and G. E. Karniadakis, "A composite neural network that learns from multi-fidelity data: Application

to function approximation and inverse PDE problems.," J. Comput. Phys., 2020.

[9] K. K. Horni, M. Stinchcombe and H. White, "Multi-layer feed forward networks are universal approximators,"

Neural Networks, vol. 2, no. 5, pp. 359-366, 1989.

[10] H. S. Das and P. Roy, in A Deep Dive Into Deep Learning Techniques for Solving Spoken Language

Identification Problems.

[11] A. S. Tenney, M. N. Glauser and Z. P. Berger, "Application of Artificial Neural Networks to Stochastic

Estimation and Jet Noise Modeling," AIAA Journal, 2010 ???.

[12] H. Demuth and M. Beale, "Neural Network Toolbox," The MathWorks, Natick,MA, 2004.

[13] C. C. Aggarwal, Neural Networks and Deep Learning, Yorktown Heights, NY: Springer, 2018.

[14] R. V. Jategaonkar, Flight Vehicle System Identificiation: A Time-Domain Methodology, Reston, VA: AIAA

Process in Astronautics and Aeronautics, AIAA, 2015.

[15] T.-A. Nguyen, H.-B. Ly and B. T. Pham, "Backpropagation Neural Network-Based Machine Learning Model

for Prediction of Soil Friction Angle," Hindawi Mathematical Problems in Engineering, 2020.

15

[16] I. H. Witten, E. Frank and M. A. Hall, "Data Management Systems," in Chapter 7- data transformations,

Burlington, MA, Morgan Kaufmann, 2011, pp. 305-349.

[17] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and

Prediction, Stanford, CA: Springer, 2008.

[18] T. Tan, Z. Yang, F. Chang and K. Zhao, "Prediction of the FirstWeighting from the Working Face Roof in a

Coal Mine Based on a GA-BP Neural Network," Appl. Sci., 2019.

[19] M. Millidere, H. B. Kurt, H. Ballı and Ö. Uğur, "Kalman Based Neural Network Analysis with Resampling

Methods for Longitudinal Aerodynamic Coefficient Estimation," in AIAA Aviation Forum, Virtual Event, 2020.

[20] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Boston, MA: Addison

Wesley Longman Publishing Co., Inc., 1989.

[21] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms, Berlin, Heidelberg: Springer, 2008.

[22] A. Chipperfield, P. Fleming, H. Pohlheim and C. Fonseca, "Genetic Algorithm Toolbox User's Guide,"

University of Sheffield, Sheffield, 2007.

[23] S. D. Sudhoff, "Genetic Optimization System Engineering Tool (GOSET) For Use with MATLAB," Purdue

University, Purdue, 2007.

[24] L. He, W. Qian, T. Zhao and Q. Wang, "Multi-Fidelity Aerodynamic Data Fusion with a Deep Neural Network

Modeling Method," Entropy, 2020.

[25] V. Klein and E. A. Morelli, Aircraft System Identification: Theory and Practices, Reston, Va: AIAA Education

Series, 2006.

[26] L. Nguyen, M. Ogburn, W. P. Gilbert, K. S. Kibler, P. W. Brown and P. L. Deal, "Simulator Study of

Stall/PostStall Characteristics of a Fighter Airplane with Relaxed Longitudinal Static Stability," NASA

Technical Paper 1538, Hampton, VA, 1979.

[27] William2002730. [Online]. Available: hangar.openvsp.org/vspfiles/343. [Accessed 05 06 2020].

[28] M. Fox and D. Forrest, "Supersonic Aerodynamic Characteristics of an Advanced F-16 Derivative Aircraft

Configuration," NASA Technical Paper 3355, 1993.

[29] K. Abhary, S. D. Dao and R. Marian, "Maximising Performance of Genetic Algorithm Solver in Matlab,"

Engineering Letters, 2016.

