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This paper is a follow-up study on prior research work on multi-fidelity aerodynamic dataset 

generation. The prior work studied a comparison of modified Variable-Complexity Modelling 

and co-Kriging methods applied to F-16 fighter aircraft. In this research, the multi-fidelity deep 

neural-genetic network method is introduced. The results provide evidence that the deep neural-

genetic network method in this paper can be employed in dealing with the aerodynamic data 

fusion problem.  

Nomenclature 

HF   = High-Fidelity 

LF   = Low-Fidelity 

MF   =  Multi-Fidelity 

𝐶𝐷   = Drag Force Coefficient 

𝐶𝐿   = Lift Force Coefficient 

𝐶𝑚   = Pitch Moment Coefficient 

𝛼    = Angle of Attack 

𝛿ℎ𝑡   = Horizontal Tail Deflection  

GA   = Genetic Algorithm 

z   =  Observed Response Data 

y   =  Model Response Data  

n    =    Number of samples in the Dataset 

CFD    =   Computational Fluid Dynamics 

VCM   = Variable Complexity Modelling 

ANN    =  Artificial Neural Network 

FNN    =  Feedforward Neural Network 

MLP    =  Multi-Layer Perceptron 

DNN   =  Deep Neural Network 

GA     =  Genetic Algorithm 

DNGN    =  Deep Neural-Genetic Network 

I.Introduction 

There are several sources to generate the aerodynamic dataset. These are semi-empirical datasheet methods, linear 

flow solvers, nonlinear flow solvers, small-scale wind tunnel tests, full-scale wind tunnel tests, and flight tests in the 

increasing order of fidelity. As fidelity increases, computational time and cost increase. For aerodynamic database 

generation, various computational and experimental methods can be utilized with respect to the cost and accuracy 
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requirements of the design phase. A summary of these methods with sample tools and classifications is provided [1] 

[2]. As expected, the higher the cost, the more accurate the aerodynamic database. Each method's resource and time 

cost are essentially tens to hundreds of times higher than those of the less accurate method [3].  

Data fusion is one of the functional approaches to obtain an aerodynamic dataset. However, using only a high-

fidelity wind tunnel test or high-fidelity computational analysis for the aerodynamic dataset generation is expensive 

to perform in terms of cost, time, or resources. Therefore, the primary motivation of data fusion is to achieve high-

fidelity data in a cheaper fashion where low-fidelity aerodynamic data provides the trend information.  

This paper presents a follow-up study from prior work [4]. Ref. [4] has shown the comparison of two different 

data fusion techniques being modified Variable-Complexity Modelling (VCM) [5] and co-Kriging method [6] [7]. 

The prior work also showed the benefit of using the co-Kriging method. In addition, this paper introduces a new 

technique called a deep neural-genetic network (DNGN). 

Neural networks have shown significant successes in dealing with large-scale data. They can easily handle linear 

or nonlinear problems at low- and high-dimensions [8] [9]. Artificial neural networks (ANN) work as a general 

function approximation and approximate any continuous function to any desired accuracy by appropriate network 

architecture. This ability of neural networks makes it popular in aerospace problems. However, some elements are not 

autonomously updated in the training process for neural networks called hyperparameters. The hyperparameter is not 

the variable that needs to be tuned or optimized through neural network training, but the variable that is set by a priori 

knowledge, e.g., number of layers, number of nodes in each layer, solver algorithm, backpropagation algorithm 

factors, activation function for each layer, initial weights and biases scale factor and so on. The performance of a 

neural network is highly sensitive to the choice of hyperparameters. Settings for these hyperparameters can 

significantly influence the resulting accuracy of the predictive models, and there are no clear defaults that work well 

for different problems and data sets. 

Choosing the best hyperparameters is the primary challenge in designing a neural network.  If the developer doesn’t 

have solid experience with the neural network, it is difficult to obtain a good model with the neural network. The new 

technique aims to automate the process of hyperparameter setting without the need for expert intervene.  This explains 

the necessity of the optimization of these hyperparameters. In this study, hyperparameter optimization of deep 

feedforward neural network (FNN) was examined using a genetic algorithm, which is called a deep neural-genetic 

network. 

In this paper, the wind tunnel test data is considered a high-fidelity dataset, and the data from the semi-empirical 

approach (Datcom) is considered a low-fidelity dataset. The aerodynamic dataset is generated using the DNGN 

approach.  

The rest of the paper is organized as follows: Section II presents the proposed approach. Then, the results and 

discussion are presented in Section III. And finally, conclusions are drawn, and future works are given in Section IV.  

II.Multi-Fidelity Deep Neural-Genetic Network Algorithm 

In this section, the structure of deep feedforward neural networks and how the genetic algorithm is applied to deep 

feedforward neural network structure are covered. 

A. Deep Neural Network Structure  

The simplest type of feedforward neural network is the perceptron (artificial neuron), which has only an input layer 

and an output layer. A perceptron simply has three sets of rules; multiplication, summation, and activation. In general, 

the mathematical formula of an artificial neuron is given in Eq. (1). 

 

𝑎 = 𝜎 ((∑ 𝑤𝑖𝑢𝑖

𝑖

) + 𝑏) 

 

(1) 

 

where 

𝑢𝑖  - the inputs to the artificial neuron 

𝑤𝑖    - the weight value corresponding to each input. 

𝑏   - the bias  

𝜎 - the activation function of an artificial neuron. 

𝑎  - the activation (output value) of artificial neuron.  
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The multi-layer perceptron (MLP) is a feedforward neural network consisting of many perceptrons. MLP has three 

kinds of layers; input layer, hidden layer, and output layer. Each neural network must have one input and output layer, 

but they can have many hidden layers. MLP with two or more hidden layers between the input and output nodes are 

often classified as feedforward deep neural network or deep neural network [10]. The power of feedforward neural 

networks to approximate complex nonlinear functions lies in the universal approximation theorem [11]. A simple 

MLP structure is given in Figure 1. 

 

 

Figure 1 Simple neural network structure. 

In Figure 1, there is a typical MLP neural network, which consists of four layers, and these are called the input 

layer, the first hidden layer, the second hidden layer, and the output layer, respectively.  The output of each layer is 

obtained as follows: 

{𝑎𝑖}(𝑘) = {𝜎}(𝑘) ((∑{𝑤𝑖𝑗}(𝑘){𝑎𝑖}(𝑘)

𝑗

) + {𝑏𝑖}(𝑘)) 

 

(2) 

 

where 

{𝑎𝑖}(𝑘)  - the output of 𝑖th neuron in the 𝑘th layer 

{𝑤𝑖𝑗}(𝑘)  - the weight of the connection from the 𝑗th neuron in the (𝑘 − 1)th layer to the 𝑖th neuron in the 𝑘th layer  

{𝑏𝑖
}

(𝑘)

  - the bias term of the 𝑖th neuron in the 𝑘th layer. 

{𝜎}(𝑘) - the activation function in the 𝑘th layer. 

 

We refer to the activations of the input units as 𝑢𝑗 and the activation of the output units as 𝑦𝑗 

 

{𝑎𝑖}(0) = 𝑢𝑖 (3) 

 

The outputs of the neurons in the last layer can be seen as the overall networks’ outputs: 

 

𝑦𝑖 = {𝑎𝑖}(3) (4) 
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The activation function used in the artificial neuron is a critical element of a deep neural network. Without 

activation function, deep neural networks cannot learn nonlinear functions. Thus, the activation function provides a 

neural network some nonlinearities. There are many activation functions used in literature, but the most commonly 

used activation functions are illustrated in Figure 2.  

 

Figure 2 Most commonly used activation functions representation. 

A two hidden layer deep neural network with linear transfer function at output layer is selected for this study. And, 

instead of matching the multiple outputs through a single network, multiple modules are used, each consisting of a 

suitable neural network characterizing just one aerodynamic coefficient. For regression, we use sum-of-squared errors 

as our measure of fit (objective function). The mean square error (MSE) method is used to calculate neural network 

loss, and MSE is given in Equation (5). 

 

MSE𝑇𝑟𝑎𝑖𝑛 =
1

𝑛𝑑𝑎𝑡𝑎

  ∑ ( 𝑧𝑗 − 𝑦𝑗)
2

𝑛𝑑𝑎𝑡𝑎 

𝑗=1

 

 

(5) 

 

 

 

𝑗   - The discrete data index 

𝑛𝑑𝑎𝑡𝑎  - Number of data 

𝑧𝑗   - Measured (actual) data in 𝑗th discrete data index 

𝑦𝑗  - Estimated data in 𝑗th discrete data index 

 

Another important concept of the neural network is used backpropagation algorithm. Among many 

backpropagation algorithms, the Levenberg-Marquardt backpropagation algorithm is chosen for this study since it is 

fast and gives better results [12]. It is a combination of Gradient Descent and Gauss-Newton optimization. Table 1 

presents the hyperparameters of the Levenberg-Marquardt Algorithm. 

Table 1 The hyperparameters of Levenberg-Marquardt algorithm. 

# Name Symbol 

1 Initial Dampening Factor 𝜇0 

2 Increase Dampening Factor 𝜇𝑑𝑒𝑐 

3 Decrease Dampening Factor 𝜇𝑖𝑛𝑐 

4 Maximum Dampening Factor 𝜇̅ 

1. Some Issues in Deep Neural Network Training 

 There are several important issues associated with the setup of the neural network, preprocessing, and initialization. 

Therefore, neural network training can be made more efficient if specific steps are performed for these issues. In this 

sub-section, several important issues are described [12] [13]. 
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Scaling of the Inputs and Outputs (Feature Preprocessing) 

 Data scaling is recommended before applying the optimization methods [14]. This is found to be particularly the 

case while training feedforward neural networks. Here, scaling refers to arranging the values between the chosen lower 

and upper limits such that all of the variables have a similar order of magnitudes. All data is scaled to the range [0,1] 

or [-1,1] generally [12] [14] [15] [16]. All data is scaled to the range [-1,1] to reduce numerical error during neural 

network training as recommended by [12]. 

 

𝒖𝑛
𝑖 = −1 +

2(𝒖𝒊 − 𝒖𝑚𝑖𝑛
𝑖 )

𝒖𝑚𝑎𝑥
𝑖 − 𝒖𝑚𝑖𝑛

𝑖  

 

𝒚𝑛 = −1 +
2(𝒚 − 𝒚𝑚𝑖𝑛)

𝒚𝑚𝑎𝑥 − 𝒚𝑚𝑖𝑛

 

      

(6) 

 

 where ( )𝑚𝑖𝑛, ( )𝑚𝑎𝑥, and ( )𝑛 are the minimum, maximum, and normalized values of the considered variable, 

respectively. 

The initial weights 

 Initial weight assignment is one of the essential steps in neural network setup. The initial weights are generally set 

to small random numbers to avoid saturation in the neurons. It was observed that the algorithm does not work correctly 

if the initial weights are either zero or poorly chosen nonzero values [14]. The use of exact zero weights leads to zero 

derivatives and perfect symmetry, and the algorithm never moves. Starting instead with large weights often leads to 

inadequate solutions [17]. To avoid the saturation region of the activation function, the weighted sum output value 

becomes near to 0 as much as possible, which can increase the weight adjustment range. Therefore, the initial 

connection weights are usually random numbers between [-1,1] so that the network is not significantly affected [18]. 

 In this study, initial weights and biases are set between random numbers between [-1,1] and scaled by scale factors 

between [0,1]. 

2. Feedforward deep neural network model validation 

The performance of the neural network is an important criterion to assess the optimized hyperparameters. The 

available dataset is divided into training and testing datasets, firstly. The testing dataset, which is not seen in the 

identification phase, is used to assess the final performance at the end of the model identification. However, we should 

remark that the training dataset can be used in different ways to assess the fitted model using various resampling 

methods in the identification phase. e.g., train-validation split (hold-out cross-validation), 𝑘-fold cross-validation, or 

bootstrap approaches. It was shown that the 𝑘-fold cross-validation approach is superior to the hold-out cross-

validation and bootstrap approaches [19]. For this study, the dataset is divided two-part; training (80%), testing (20%), 

and 𝑘-fold cross-validation approach is used to validate the neural network. 

B. Hyperparameter Optimization Methods 

 The hyperparameters that define a deep neural network can be separated into two categories: the ones that define 

the architecture of the network and the ones that affect the optimization process of the training phase. The proposed 

method considers both categories at once.   

 Tuning the hyperparameters of a deep neural network is a critical process that was mainly done manually, relying 

on the previous experience of the experts (manual search). This is usually done using a trial-and-error process. 

However, even with expertise in deep neural networks and their hyperparameters, the best set of these hyperparameters 

changes with different data and is time-consuming. To address this problem, the ability to find the optimal 

hyperparameters in an automated manner is needed. Since genetic algorithm theory is a mature and widely used 

optimization routine, the automated hyperparameter selection in Deep Neural Network is made via a genetic algorithm.  

1. Genetic Algorithm 

 Genetic algorithms are optimization methods that are inspired by biological evolution. Genetic algorithms operate 

on a population of candidate solutions and apply the principle of survival of the fittest to evolve the candidate solutions 

towards the desired optimal solutions. In a genetic algorithm, candidate solutions are referred to as individuals or 

parameters. A population refers to a group of individuals. There are six phases in a genetic algorithm: initial 

population, fitness evaluation, selection, crossover, mutation, and elitism. The reader is referred to Refs. [20] [21] [22] 

[23] for detail description of genetic algorithms. Figure 3 illustrates the steps of a typical genetic algorithm.   
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Figure 3 Typical Genetic Algorithm flowchart. 

C. Hybridization of Genetic Algorithm with Deep Neural Network 

Figure 4 shows a deep neural network flowchart. The measured output and predicted output are compared, and an 

objective function is measured to evaluate the neural network's performance. Weights and biases are updated using a 

solver (optimization) algorithm to minimize the objective function. Neural Network architecture/solver 

hyperparameters and initial weights/biases must be decided before the optimization routine starts. 

 

Figure 4 Deep Neural Network flowchart. 

Table 2 and  Table 3 summarize the hyperparameters responsible for defining the structure of the network.  

 

Table 2 User-defined neural network hyperparameters. 

# Hyperparameter Ranges and Functions 

1 Architecture  2 hidden layer feed forward neural network 

2 Fitness function Training dataset MSE 

3 Solver Levenberg-Marquardt Optimization 

4 Epoch 300 

5 Maximum dampening factor for solver, 𝜇̅  10000 



7 

Table 3 Deep Neural Network hyperparameters tuned by Genetic Algorithm. 

# Hyperparameter Ranges and Functions 

1 Number of neurons in the first hidden layer {1,2,…,50} 

2 Activation function for the first hidden layer {Logsig, Tansig, ReLU, Linear} 

3 Number of neurons in the second hidden layer {1,2,…,50} 

4 Activation function for the second hidden layer {Logsig, Tansig, ReLU, Linear} 

5 Weights and biases initization factor [0,1] 

6 Initial Dampening factor for solver, 𝜇0 {0.01, 0.02, …, 0.1} 

7 Increase factor for solver, 𝜇𝑖𝑛𝑐 {2, 3, …, 10} 

8 Increase factor for solver, 𝜇𝑑𝑒𝑐 {1 2⁄ , 1 3⁄ , …, 1 10⁄ } 

D. Multi-Fidelity Deep Neural-Genetic Network Algorithm Implementation 

 

The implementation of the Multi-Fidelity DNGN algorithm is as follows: 

 

1. A low-fidelity DNGN model is build using a low-fidelity dataset.  

 

𝑓(𝑢𝐿𝐹) ≈  𝑓𝐿𝐹(𝑢𝐿𝐹) (7) 

 

2. Predict low-fidelity values for each data point in the high-fidelity dataset. This step is necessary because the given 

dataset probably is not taken in the same aerodynamic condition. 

 

𝑓(𝑢𝐻𝐹) ≈  𝑓𝐿𝐹(𝑢𝐻𝐹) (8) 

 

3. The increments or differences are calculated between low-fidelity data at each high-fidelity data point, which is 

calculated in step-2 and high-fidelity data. 

 

𝛽(𝑢𝐻𝐹) =  𝑓𝐻𝐹(𝑢𝐻𝐹) − 𝑓𝐿𝐹(𝑢𝐻𝐹) (9) 

 

4. The increment function is calculated by using the set of increments or differences data which are found in step-3 

using the DNGN approach. 

5. Data fusion function is a simple summation of low-fidelity Kriging and increment Kriging model for the desired 

data point.  

 

𝑓(𝑢) ≈  𝑓𝐿𝐹(𝑢) +  𝛽(𝑢) (10) 

 

When the broad range of aircraft flight envelope is considered, these aerodynamics coefficients have nonlinear 

relationships with their dependent variables. The two separate fully-connected neural networks can be employed to 

approximate the linear and nonlinear part of increment function for the low- and high-fidelity data [24]. But to reduce 

the computational effort, the nonlinearity in the increment function is expressed using spline functions. Spline 

functions are defined only on the subintervals and can approximate nonlinearities quite well. The angle of attack range 

is divided and added as dependencies to neural network inputs for improving performances. Parameters dependent on 

the angle of attack in longitudinal coefficients are expressed using spline functions [25] in the form 

 

(𝛼 − 𝛼𝑖)+
𝑚 = {

(𝛼 − 𝛼𝑖)
𝑚            𝛼 ≥ 𝛼𝑖

0                             𝛼 < 𝛼𝑖
 

      

(11) 

III.Results and Discussions 

A. Data Preparation and Evaluation 

 In this study, a two-dimensional aerodynamic force data fusion problem was considered. Digital Datcom constructs 

the aerodynamic database of F-16 aircraft to function the angle of attack and the horizontal tail deflection. Moreover, 

wind tunnel tests are adapted to improve the database. The former represents the low-fidelity dataset, while the latter 

does the high-fidelity dataset. The wind tunnel results are obtained from the open-source F-16 aircraft data [26]. Digital 
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Datcom includes empirical methods for aerodynamic data predictions. Thus, it enables fast and reasonably accurate 

computations in conceptual design phases. 

 The primary geometry of F16 is obtained from OpenVSP-Hangar, as shown in Figure 2 [27]. The fuselage 

geometry is prepared from this geometry while the wing, horizontal tail, and vertical tail geometries are modified with 

respect to a supersonic wind tunnel test campaign [28]. The model is on a 1/15 scale. 

 
Figure 5. Top, isometric, bottom, and left-side view of F16-OpenVSP geometry 

 

 The aerodynamic database is created for clean aircraft and horizontal tail deflections. The angle of attack ranges 

between 0° and 30° while the Mach number is set to 0.2 at sea level flight condition. For the non-dimensional 

coefficients, the mean aerodynamic chord is selected as 3.45 m while the span is set to 9.15 m. Additionally, the wing 

area is set to 27.86 𝑚2. 

 There were 775 and 341 points at the low- and high-fidelity levels, respectively. The data encompassed 𝛼 and 

𝛿ℎ𝑡  values in the ranges: 

 

𝛼𝐿𝐹 = {0°, 1°, 2°, ⋯ ,30°} 

𝛿ℎ𝑡𝐿𝐹
= {−25°, −22°, −20°, −18°, −16°, −14°, −12°, −10°, −8°, −6°, −4°, −2°, 0°, 2°, ⋯ ,22°, 25°} 

𝛼𝐻𝐹 = {0°, 1°, 2°, ⋯ ,30°} 

𝛿ℎ𝑡𝐿𝐹
= {−25°, −20°, −15°, −10°, −5°, 0°, 5°, 10°, 15°, 20°, 25°} 

      

(12) 

 

 Drag, lift and pitch moment coefficients of F-16 aircraft geometry for low- and high-fidelity datasets are compared 

in the prior work [4].  Since the main idea is to improve the data quality of a low-fidelity model, these comparisons 

are helpful to observe differences between low- and high-fidelity models. Lift and drag coefficients of the low-fidelity 

dataset are much more correlated than the pitch moment coefficient for the high-fidelity dataset.  

B. Multi-Fidelity Deep Neural-Genetic Network Results 

 The qualitative accuracy spreads of the testing samples of the longitudinal coefficients are shown in Figure 6. All 

points are clustered along the equality line; the predicted values are close to the true value, which shows that the 

proposed method shows good performance in the testing data sets.  
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a) 𝐶𝐷 

 
b) 𝐶𝐿 

 
c) 𝐶𝑚 

Figure 6 Accuracy spread of the high-fidelity testing points for aerodynamic coefficients. 

The GA has its own set of hyperparameters. The choice of genetic algorithm hyperparameters should be carried 

out carefully. Any wrong choice produces meaningless results. The hyperparameters are defined with respect to Ref. 

[29]. The hyperparameters for the genetic algorithm that is set in this application are provided in Table 4.  

Table 4 Genetic Algorithm hyperparameters. 

# Hyperparameter Value and Description 

1 Number of population 50 

2 Number of generation 20 

3 Fitness function k-fold CV estimate of DNN 

4 Selection method Roulette wheel 

5 Crossover operator Crossover operator 

6 Crossover fraction 0.8 

7 Mutation operator Gaussian 

8 Mutation fraction 0.05 

9 Elite count 2 

10 Data used Training dataset 

 

In this case, there were two hidden layers used within the low-fidelity neural network, while two hidden layers 

were used within increment function neural networks, respectively.  The training time of the model was closely related 

to the number of training data and the number of epochs. The training MSE of longitudinal coefficients already reached 

steady-state values at around 150 epochs, before which the weights of the network were rapidly tuned to optimize the 

prediction model. Hence, the maximal number of epochs was set to 250 for the proposed method to reduce the training 

time. 

 It is observed that the deep neural network is not sensitive to the LM solver hyperparameters because the relative 

standard deviation, which is the standard deviation over the mean of the hyperparameters, is higher than one. That’s 

why we can use the average results for these hyperparameters, which are tabulated in Table 5. The optimum 

hyperparameters yielding the minimum MSE over 20 runs of the proposed method are provided in Tables 6-8.  

Table 5 Proposed Levenberg-Marquardt solver hyperparameters 

# Hyperparameter 
Proposed 

Value 

1 Initial Dampening factor for the solver, 𝜇0 0.46 

2 Increase factor for solver, 𝜇𝑖𝑛𝑐 6.00 

3 Increase factor for solver, 𝜇𝑑𝑒𝑐 0.49 
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Table 6 Tuned Deep Neural Network hyperparameters for the lift coefficient. 

# Hyperparameter 

Low-Fidelity  

Neural Network 

Increment  

Neural Network 

Value Value 

1 Number of neurons in the first hidden layer 15 8 

2 Activation function for the first hidden layer Tansig Tansig 

3 Number of neurons in the second hidden layer 9 13 

4 Activation function for the second hidden layer Tansig Tansig 

5 Bias initialization factor 0.60 0.80 

6 Initial weight scale factor 0.40 0.40 

7 The first hidden layer weight scale factor 0.80 0.70 

8 The second hidden layer weight scale factor 0.30 1.00 

 

Table 7 Tuned Deep Neural Network hyperparameters for the drag coefficient. 

# Hyperparameter 

Low-Fidelity  

Neural Network 

Increment  

Neural Network 

Value Value 

1 Number of neurons in the first hidden layer 9 6 

2 Activation function for the first hidden layer Logsig Tansig 

3 Number of neurons in the second hidden layer 12 6 

4 Activation function for the second hidden layer Logsig Logsig 

5 Bias initialization factor 0.70 0.40 

6 Initial weight scale factor 0.40 0.80 

7 The first hidden layer weight scale factor 0.90 0.40 

8 The second hidden layer weight scale factor 0.60 0.40 

 

Table 8 Tuned Deep Neural Network hyperparameters for the pitch moment coefficient. 

# Hyperparameter 

Low-Fidelity  

Neural Network 

Increment  

Neural Network 

Value Value 

1 Number of neurons in the first hidden layer 13 14 

2 Activation function for the first hidden layer Tansig Logsig 

3 Number of neurons in the second hidden layer 12 10 

4 Activation function for the second hidden layer Logsig Tansig 

5 Bias initialization factor 0.30 0.60 

6 Initial weight scale factor 0.80 1.00 

7 The first hidden layer weight scale factor 0.10 0.70 

8 The second hidden layer weight scale factor 0.30 0.70 

  

 Figure 7 to Figure 9 shows that the predicted trends of longitudinal characteristics obtained with the DNGN method 

are shown with a true low- and high-fidelity dataset. 𝐶𝐿 vs 𝛼, 𝐶𝐷 vs 𝛼 , and 𝐶𝑚 vs 𝛼 plot for Mach 0.2  and 

−20°, −10°, 0° , 10°, 20° horizontal tail deflections are given in Figure 7 to Figure 9 respectively. 
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(a) 𝛿ℎ𝑡 = −20° 

 
(b) 𝛿ℎ𝑡 = −10° 

 
(c) 𝛿ℎ𝑡 = 0° 

 
(d) 𝛿ℎ𝑡 = 10° 

 
(e) 𝛿ℎ𝑡 = 20° 

 

Figure 7 The predicted trends of 𝑪𝑳 coefficient with the DNGN method. 
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(a) 𝛿ℎ𝑡 = −20° 

 
(b) 𝛿ℎ𝑡 = −10° 

 
(c) 𝛿ℎ𝑡 = 0° 

 
(d) 𝛿ℎ𝑡 = 10° 

 
(e) 𝛿ℎ𝑡 = 20° 

 

Figure 8 The predicted trends of 𝑪𝑫 coefficient with the DNGN method. 



13 

 
(a) 𝛿ℎ𝑡 = −20° 

 
(b) 𝛿ℎ𝑡 = −10° 

 
(c) 𝛿ℎ𝑡 = 0° 

 
(d) 𝛿ℎ𝑡 = 10° 

 
(e) 𝛿ℎ𝑡 = 20° 

 

Figure 9 The predicted trend of 𝑪𝒎 coefficient with the DNGN method. 
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IV. Conclusion  

A simple F16 fighter aircraft geometry is obtained from publicly open resources, and its geometric details are 

corrected. Datcom input file is created, and the subsonic aerodynamic database of F16 is generated for the baseline 

and deflected horizontal tail configurations. This database is then assigned as the low-fidelity dataset. On the other 

hand, subsonic wind tunnel data of F16 is obtained as the high-fidelity data. The differences in low and high-fidelity 

datasets are clarified: similar trends are observed for the lift and drag coefficients, although some sorts of variable 

shifts exist between these datasets. However, the trends in pitch moment are not compatible with the lift and drag 

coefficients in the similarity of the low- and high-fidelity datasets.  

The Deep Neural-Genetic Network approach is used to derive high-fidelity datasets using more low-fidelity 

datasets and less high-fidelity datasets to reduce the computational cost of high-fidelity dataset generation. The 

proposed method yielded promising results, particularly for the drag and lift coefficients.  

In the Deep Neural-Genetic Network approach, the deep neural network hyperparameters, including the number 

of neurons in each layer, activation function for each layer, biases and weights scale factors, and Levenberg-Marquardt 

solver hyperparameters, were optimized by a Genetic Algorithm. It is observed that different choices of Levenberg-

Marquardt hyperparameters are seen to give essentially the same performance because this algorithm adjusts the 

damping at each iteration. It is also observed that the number of neurons in each layer and activation function for each 

layer are the most dominant hyperparameters affecting deep neural network performance.  

Experiment design is the critical factor for surrogate prediction accuracy. In future work, different design of 

experiments approaches will be implemented. 
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