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ABSTRACT  
The level of autonomy of autonomous vehicles has increasing considerably within the last couple of years. 
Nowadays cars are expected to work on complex, unknown environments effectively. These days, there are many 
studies autonomously driven car for outdoor environment. These cars have very reliable localization and mapping 
performance using GPS. On the other hand, GPS does not work reliable for indoor environment. In this paper, 
GPS denied indoor environment localization is studied. We propose combination of visual and inertial sensors for 
localization. We have implemented the ORB-SLAM algorithm computer. After that IMU and ORB-SLAM 
algorithm are combined for finding optimum localization data. In order to combine these two sensors, linear 
kalman filter is used. All of implementation and filtering of two sensors is done using ROS (Robot Operating 
System). This system was installed on RC car to demonstrate the effectiveness of the system. Experiments 
performed on indoor environment show the advantages and limitations of the system. 
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1. INTRODUCTION AND MAIN SECTIONS  
Nowadays autonomous cars are expected to drive autonomously on complex environments such as crowded 
indoor environments or busy streets. The successful operation of a car depends heavily on knowing the exact 
location of the car throughout the motion, which is known as localization. If the map of the environment is known, 
localization is simply determining where the car is on this map. Localization is very important in autonomous 
vehicle area. When there is no map available, then localization as well as map building will be necessary at the 
unknown environment to autonomously drive the car.  

For car localization there are different techniques; odometry, Global Navigation Satellite System (GNSS), inertial 
navigation and visual techniques. For outdoor environments GNSS information obtained from orbiting navigation 
satellites provide this information freely. For indoor environments (and at some outdoor areas as well) relying on 
GNSS is not an option due the fact that the GPS data is not reliable or non-existing due the inability to access 
enough satellite data. 

Another approach on localization is to use vehicle tire rotation as well as steering wheel angle. This approach is 
called odometry. This approach is possible to use for car localization. However there are some drawbacks of this 
approach. It suffers from position drift and inaccuracy because of tire slippage. If tire of car slips, measurement of 
rotation of tire gives wrong information. As result of this situation localization of car is not reliable. Also 
translation and orientation errors in tire odometry increase with time and total travelled distance have big error.  

One other approach is the use of an inertial navigation system (INS), which relies on inertial sensory techniques to 
estimate vehicle position. In this approach Micro Electro Mechanical systems (MEMS) based micro sensors 
involving accelerometers, gyros, and magnetometer are combined in a package, and a microprocessor fuses the 
data through a filter to calculate the vehicle position. If GNSS data is available, the estimated of INS can be 
updated or calibrated. This approach is called as GNSS/INS integration, and it proposes even smaller errors. Xsens 
MTI-G-700, proposes accuracy of 2 meters depending on GNSS availability and placement of the antenna (URL 
1). Although GNSS based techniques are simple, easy to implement and proposes small localization errors, it is 
not applicable to our indoor environments due to no GNSS reception. 

Localization of autonomous cars can also be done using visual information obtained through cameras. Some 
techniques use artificial visual clues placed on the environment. 2D fiducial markers are popular for localization 
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due to fast and robust behavior. Placing unique markers to the know locations of the environment help the vehicle 
to localize itself. The markers should be in acceptable size, to be seen by the camera in a distance, but not too big 
to disturb the environment. They should be detected in real-time with a computer. They should be robust to 
lighting condition changes, which is one of the most limiting factors in successful vision systems in real-world 
conditions. Moreover, they have to robust on blurred marker detection which occurs as the camera moves, as well 
robust on detecting partially missing or occluded markers that may be placed on the environment. Comparison of 
some of these techniques is presented in (Garrido-Jurado continued, 2016), (Muñoz-Salinas continued, 2016). 

Placing artificial markers or patterns on an environment for localization is not very practical. Localization of 
autonomous car simultaneously, as it moves using vision and tracking only natural features (such as edges) is 
called as, simultaneous localization and map building (SLAM). One of the first feature-based real-time SLAM 
approach was proposed by Klein and Murray (Klein and Murray, 2007) as the PTAM method. It involves 
concurrent tracking and mapping of features. Davidson (Davison continued, 2007) used the SFM reconstruction 
technique for parallel tracking and mapping. Bora and Erdinç used this technique on the localization and 
stabilization of a quadrotor (Yiğit and Altuğ, 2012).  

More recently, another SLAM approach was proposed that is based on extraction of ORB features (Mur-Artal 
continued, 2015). This approach is called as ORB-SLAM and it is shown to be more robust and more suitable for 
autonomous car application. It is shown to operate in real time, in small and large, indoor and outdoor 
environments. The accuracy of the system was reported to be in the order of cm in indoor environments and up to 
a few meters in large outdoor environments. ORB-SLAM is very promising on autonomous vehicle. ORB-SLAM 
algorithm requires high computation power. The computer used on paper (Mur-Artal continued, 2015) was having 
an i7 processor. High computation power is not problem for big and large autonomous vehicle platform. However 
it is not effective, when vehicle platform is small. Some researches (Martinez-Carranza continued, 2015) preferred 
to transfer the onboard images to a ground computer for processing and implemented the ORB-SLAM. This 
approach limits the autonomy considerably and not feasible because of the limited range and connection problems 
involved with transmitting images and receiving data from ground computer. In this study mono-camera is used 
for ORB-SLAM algorithm. Yingcai (Bi continued, 2016) propose the use of ORB-SLAM on a MAV with a dual-
camera system.  

Sensor fusion algorithm is commonly used for combining sensors. GPS and inertial sensor fusion application is 
very effective. However it can only work outdoor environment. Visual and inertial sensor fusion algorithms are 
can be used for indoor environment. Chang (Liu continued, 2016) propose semi direct monocular visual odometry 
(SVO) and freeIMU sensor fusion. In this study orientation fusion are done gradient descent optimization 
methods.  ORB-SLAM algorithm is more accurate than SVO visual odometry algorithm and our application 
ORBSLAM is used and linear kalman filter is used instead of gradient descent optimization method.        

In this paper, we propose an onboard vehicle localization for autonomous car platform. Visual and inertial sensor 
fusion is used to localize vehicle. Sensor fusion algorithm is separated two part, position fusion and orientation 
fusion. High computational computer (i7) is used for ORB-SLAM algorithm. Sensor fusion algorithm is used to 
obtain optimum localization measurement. Because ORB-SLAM algorithm is very accurate, but it is not speed 
enough. In situation of fast movement of vehicle ORB-SLAM algorithm performance decrease. On the other hand 
inertial sensor is not accurate like ORB-SLAM, but it measures data very fast. Fusion of visual and inertial sensor 
gives better localization measurement.    

The rest of the article is organized as follows: section ‘localization and mapping’ gives ORB-SLAM algorithm; 
‘Sensor fusion’ section gives overview of visual-inertial fusion algorithm; ‘Orientation fusion’ section gives 
mathematical model of orientation filter; ‘Position fusion’ section gives mathematical model of position filter; 
‘Experiment’ section gives experiments are done; ‘ROS’ section express ROS (Robot Operating System); 
‘Conclusion and recommendations’ section gives result of sensor fusion application and gives recommendations.    
 
 

2. LOCALIZATION AND MAPPING 
Localization and map building with a monocular camera is very important for autonomous vehicle. For autonomy 
it should work without any artificial features, but track natural features (such as edges). ORB-SLAM is currently 
the best visual SLAM method on literature. ORB-SLAM algorithm is developed by Raul Mur-Artal (URL 2) at the 
University of Zaragoza. The system utilizes ORB descriptors and has several novel features, including 
 

 For all task, ORB-SLAM algorithm uses same ORB features, in this way calculation time decreases. 
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 When tracking failure, algorithm can recovery itself using previous key frames. 
 Automatic map initialization procedure. 
 Algorithm can elect the same key frames and features and select best ones for algorithm. 

 
ORB-SLAM is based on ORB descriptors, and it involves three concurrent threads; tracking, mapping and loop-
closing (Figure 1). Each of these processes can be executed efficiently with few processor instructions. 
 

 
 

Figure 1: ORB-SLAM algorithm structure (URL 2) 

Tracking thread is responsible for camera pose estimation. It does this by searching correspondences of map points 
in the current and previous frames. It can add a new keyframe in to the graph. First, an initial feature matching 
with the previous frame is done. Then the pose is optimized using motion-only bundle adjustment techniques. This 
thread also responsible tracking reinitialization, in case tracking is lost because of any disturbances or other 
reasons. Reinitialization is done using place recognition module which perform global relocalization. 
Local mapping thread runs on every new key frame. Mapping thread builds up the local map by, adding or 
removing new map points, optimizing key frames on the local map. Upon every new key frame insertion, this 
thread adds a new node for that key frame and updates all shared points. It the updates the spanning tree, linking 
this frame with the key frames that has the most points in common. This thread also tries to detect redundant key 
frames and delete them. Most of the map points have seen at least three key frames or more. If same points are 
seen least three key frames are deleted.  
 
Loop closing thread takes the last processed key frames and tries to determine whether loop closure has occurred. 
This is calculated by looking the same ORB feature in map points. If loop closing has been detected, map points 
errors are calculated and optimization is performed to make correction on points. 
 
ORB-SLAM is also available in the ROS platform; making is a very promising tool in autonomous vehicle and 
robotics. In this study ORB-SLAM is applied using ROS.  
 
 

3. SENSOR FUSION 
Visual and inertial sensors can work each other very well. Before implementation of sensor fusion algorithm of 
two visual and inertial sensor, some assumptions are made. Firstly these assumptions are made and then 
mathematical expression of orientation and position fusion are explained.  All the coordinate frames are defined 
following right hand rule. The earth frame {E} is fixed to world and  axis is parallel to gravity vector. IMU 
sensor frame is defined as {S}. Vision frame (ORB-SLAM) is defined as {V}. World frame of vision frame is 
{V}. In ORB-SLAM algorithm motion expressed with respect to visual frame {V}. The first assumption is that 
world frame {E} is very close, even it is same with the visual frame {V}. Other assumption is that projection of  
axis to  –   plane is parallel to  axis. It is not perpendicular to  –   plane. With these two assumption, 
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we can accept two axis looks like same. So we can define filter inertial and visual sensors motion. Figure (2) show 
coordinate frames.   

 

Figure 2: Coordinate frames 

 

Sensor fusion algorithm structure is given figure (3). Algorithm takes rotation  from inertial sensor and  
from visual sensor (ORB-SLAM) algorithm for orientation fusion part. Then apply the linear kalman filter for 
these measurement. Also Position sensor fusion takes unscaled position  and rotation  measurement from 
visual sensor, accelerometer measurements  from inertial sensor and filtered rotation values   from 
orientation fusion part. Output of fusion process estimates position and orientation of sensor frame {S} with 
respect to {E} frame.  Sensor fusion is separated two process as seen figure (3). Firstly orientation fusion is 
estimated, the position fusion is estimated using output of orientation fusion. Linear kalman filter is used for both 
process to estimate measurements. Separation of kalman filter reduces number of state vector and nonlinearity of 
system.  

Figure 3: Sensor fusion algorithm structure. 

 

3.1. Orientation Fusion  

There is three coordinate systems in the algorithm. Sensor coordinate frame represent the orientation of sensors 
(visual, inertial). World coordinate frame {E} is reference frame of inertial sensor, visual {V} coordinate frame is 
reference frame of visual sensor (ORB-SLAM). Purpose of orientation fusion is that obtain the optimum 
orientation values. In order to obtain optimum orientation values, quaternion measurement of inertial and visual 
sensors are filtered with kalman filter. Kalman filter is applied with two parts. These are time and measurement 
update. Sensor reading are not synchronize because of the sensors working speed.  Visual sensor (ORB-SLAM) is 
slower than inertial sensor. So we cannot update sensor measurement at same time. In this situation different 
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approach is applied to algorithm. When a sensor measurement is available, measurement part is updated with this 
measurements.  

Firstly time update part of kalman filter is applied. Equation (1) and (2) shows time update of kalman filter. Here A 
matrix is state transition matrix and x express state vector. Orientation fusion has 4 state parameter equation (3) 
shows the state vector. These are quaternion values. So we have 4 state for orientation fusion. A and H matrix are 
identity matrix. Sensor measurements are directly combined with quaternion values because of sensor 
measurement also quaternion values.  

1ˆ ˆk kx Ax

                                                                                             (1) 

1
T

k kP AP A Q

                                                                                         (2) 

 

ˆ
T

w x y zx q q q q                                                                                      (3) 

Here Q is process noise covariance matrix and R is measurement noise covariance matrix. These covariance matrix 
should be independent each other. Standard deviations are found for Q and R matrix; 

 0.4Q                                                                                               (4) 

0.02R                                                                                              (5) 

Process and measurement noise covariance matrix are calculated using standard deviation of equation (4) and (5). 
Both sensors standard deviation are taken same. So both of them has same covariance matrix. Following the time 
update, measurement update is done with equation (6-8). Here matrix with star ‘*’ express available the sensors 
measurement. In orientation case, H and R matrix are same for both sensors measurement. 

   1( )T T
k k kK P H H P H R 

 



                                                                               (6) 

(ˆ ˆ )ˆk k k k kx x K z H x 

                                                                                     (7) 

( )k k kP I K H P 

                                                                                       (8) 

In order to initialize the orientation fusion procedure, starting values of  and  should be given to algorithm. 
Here  and  is zero matrix. 

 

3.2. Position Fusion  
Position sensor fusion algorithm more complex than orientation fusion. Position fusion algorithm takes 3 input and 
estimate position. Estimation of orientation ESq   with respect to {E} frame, accelerometer measurement sa with 
respect to {V} frame and unscaled position VSp and orientation vsq measurements are taken from ORB-SLAM 
algorithm. Position fusion states vector has 13 states; estimation of position ESp , estimation of velocity ESv  and 
estimation of accelerometer ESa  values with respect to word frame. Also bias vector and metric scale factor are 
included inside state vector.  

Position fusion algorithm is applied world {E} frame, so all sensor measurement should transferred from {S} 
frame to {E} frame. In world coordinate system, dynamic acceleration is calculated like equation (9). Here 

 0 0 0 1 T
Eg   is gravity vector. Also ‘ ’ symbol express quaternion multiplication and ESq  is conjugate 

of ESq . 

 
0

S ES S ES E
ES

a q a q g
a

 
    

 
                                                                     (9) 
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Normalization of accelerometer values; 

 S
S

S

a
a

a
                                                                                        (10) 

Unscaled position values transferred from {S} sensor coordinate system to world {E} coordinate system; 

 
0

ES VS VS VS ES
ES

q q p q q
p

  
     

 
                                                             (11) 

After measurement are calculated with respect to world frame. Kalman filter structure is explained for position 
fusion. Because of asynchronous sensor working, measurement update part of kalman filter is done with available 
sensor measurement just like orientation fusion. State vector of position fusion algorithm is given equation (12). 

TT T T T
ES ES ES Sx p v a b                                                                           (12) 

The state vector is updated every loop, following rule defined by the prediction model, which defines the physics 
of the inertial system; 

ES ESp v&                                                                                       (13) 

 ES ESv a&                                                                                        (14) 

ES aa n&     S bb n&    n &                                                                       (15) 

ESa , Sb  and    are modelled as Gaussian normal distribution with zero-mean values; 

( ) (0, )
( ) (0, )
( ) (0, )

a a

b b

p n N Q
p n N Q
p n N Q 

:
:
:

                                                                               (16) 

2
3a aQ I  and 2

3b bQ I  are the process noise covariance matrix of filter. After definition of variable we can 
write the time update of kalman filter. It is same for orientation model time update. 

1ˆ ˆk kx Ax

                                                                                        (18) 

1
T

k kP AP A Q

                                                                                    (19) 

Where A state transition matrix, P is state covariance matrix. Q is process noise covariance matrix and defined 
as 2

6 6(0 , , , )x a bQ diag Q Q  . 

Measurement update of position fusion process same as orientation fusion. Equation (21-23) can be used to 
estimate position. We should pay attention to which sensor measurement is reading., since position fusion case 
measurement model H  is different for two model and measurement noise v  also different for each sensor. Here 
measurement noise is modelled as Gaussian normal distribution; 

( ) (0, )p v N R :                                                                                      (20) 

Measurement model of position fusion; 

1( )T T
k k kK P H H P H R 

 



                                                                               (21) 

(ˆ ˆ )ˆk k k k kx x K z H x 

                                                                                   (22) 

( )k k kP I K H P 

                                                                                      (23) 

Measurement model H  for accelerometer measurement is 3 6 3 3 1(0 , , ,0 )as x ES xH I R . Where ESR  is rotation matrix 
and it is calculated with current quaternion angle. Measurement model H  for vision measurement 
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is 3 3 9( ,0 , )vs x ESH I p . When acceleration measurement is available, measurement noise covariance matrix will 
be 2

3as asR I . On the other hand, when vision measurement is available, measurement noise covariance matrix 
will be 2

3vs vsR I . Used parameter values are given below table (1).  These parameter values are taken from (Liu 
continued, 2016). 

Table 1: Parameter values 

Parameter Value 

a  0.5 

b  61 e  

  61 e  

as  0.013 

vs  0.005 

 

 

5. ROS (ROBOT OPERATING SYSTEM) 

ORB-SLAM algorithm and sensor fusion process, all work on ROS (Robot Operating System). ROS is not 
operation system like Windows or Linux, but it is a working environment for robots. It needs to Linux operating 
system to work. ROS environment is developed from Willow Garage at 2007. It is very effective and dynamic 
software for robotic application. ROS provide easy and understandable relationships for complex jobs at robotic 
area. ROS is open source software and provide many package like gazebo simulation tool, rviz visualization tool. 
In this study rviz package is used for showing vehicle localization performance at experiments.  

ROS works with nodes, message, topics and publisher/subscriber. Shortly, there are nodes which responsible 
different jobs independently. These nodes communicate each other with publishing or subscribing message to 
specific topics. One node publish message for A topic and another nodes subscribe this A topic and listen message 
which is sent another nodes. ROS communication structure has many advantages; each nodes can be wrote 
different programming language and still communicate each other; one of the node is crashed, other node continue 
to work. 

In our case, firstly ORB-SLAM algorithm publish pose of sensor frame to specific topic, same time inertial sensor 
also publish pose of sensor frame to another topic. Arduino is used to read inertial sensor measurement. Arduino 
communicate with ROS using rosserial. Related nodes subscribe these topics and sensor fusion algorithm is done. 
After this process output of sensor fusion algorithm publish to rviz visualization tool. Same time rviz show the 
algorithm results. 
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6. EXPERIMENT 
Various indoor experiments were performed to test the developed sensor fusion algorithms. Firstly, laptop web 
cam is used to provide image frames to ORB-SLAM algorithm. An inertial sensor (IMU) is placed top side of the 
webcam. IMU and Arduino are mounted in the box as seen on figure (4).  

 

Figure 4: Implementation of system 

The experiment is done at indoor environment as seen captured frame at figure (5). Figure (6) shows the 
screenshot of rviz visualization tool.  

Figure 5: Some captured frame of experiment 

Figure 6: ROS rviz visualization tool screenshot 
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A RC car is used to carry laptop in this experiment. The path which the car followed looks like ‘L’. L shaped path 
have 20 meter long edge and 7.5 meter short edge. Grid edges distances at rviz is equal to 0.25 meter. Figure 7 
shows rviz environment. Each edge of square is 0.25 meter. Total long and short edges of algorithm path 
approximately are calculated as seen figure (7). Long edge is equal to 0.270 meter and short edge is equal to 0.083 
meter. There is a scale factor between real distance and estimated distance as seen results. When scale factor is 
calculated for long edge, scale factor is obtained as 74.07. Then short edges multiply with scale factor and 
estimated short edges distance is calculated. It is obtained as 6.14 meter. Our real distance is equal to 7.5 meter. 
The estimation error is about 1.35 meters 

 

 
Figure 7: Rviz grid measurement as meter. 

.  

7. CONCLUSIONS AND FUTURE WORK 
Especially in indoor areas, as well as GPS denied environments localization is critical for useful operation of an 
autonomous vehicle. In this paper, we propose a combination of visual and inertial sensors for autonomous vehicle 
localization. We have implemented one of the most promising visual odometry algorithms, the ORB-SLAM 
algorithm, with an inertial measurement unit (IMU) sensor. IMU and ORB-SLAM algorithm are combined for 
finding optimum localization data. Visual and inertial sensor fusion algorithm has been implemented on a RC car 
platform for experiments. Visual – inertial sensor model gave us promising results. Algorithm can work real time 
and follow the path. Estimation result should be multiplied with some scale factor to obtain real estimation. Our 
algorithm estimates the real position with reasonable error, in other words, the estimation success rate is about 80 
percent. One reason of the position error is our approach to model the nonlinear system as linear.  

In the future, this algorithm will be integrated to an Odroid XU4 embedded mini-computer for localization. 
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